
The Magmoid of Normalized Stochastic Kernels
Elena Di Lavore

University of Oxford

United Kingdom

Mario Román

University of Oxford

United Kingdom

Márk Széles

Radboud University Nijmegen

The Netherlands

Abstract

Normalization, D(X + 1)→ D(X) + 1, is almost a distributive law;

but because one of the distributive law axioms only holds up-to-

idempotent, it yields a non-associative composition of normalized

kernels. We introduce the Markov magmoid of normalized stochas-

tic kernels: a normalized-by-construction semantics for probabilis-

tic inference, unifying exact Bayesian observations and interven-

tions as two parenthesizations of the same composite. Front-door

and back-door criteria follow from the axioms ofMarkovmagmoids;

we implement these with non-associative monadic notation.

1 Introduction

Normalization is essential in probabilistic inference: Bayes’ law

needs normalization to rescale the posterior distribution,

posterior ∝ likelihood · prior .

However, probabilistic programming semantics is not necessar-

ily normalized-by-construction: normalization mostly appears as

an external primitive, and updating usually employs subdistribu-

tions [Pan99, BDGS16] or unnormalized distributions [Koz81, Sta17,

WCGC18, EPT17]. Let us provide an example.

Imagine solving the famous Monty Hall problem [Sel75]: in a

game show, you choose from three closed doors for a chance of

winning the prize behind one of them; however, after choosing, the

host opens one of the empty doors and—with two closed doors

standing— invites you to switch your guess. Should you switch?
Let us compute. We (i) consider a prior uniform probability that a

prize is behind any of three doors (𝐿,𝑀 , 𝑅); then, (ii) after choosing,
say, the middle door, the host will randomly and uniformly open

a door (𝐿, 𝑀 , 𝑅) that cannot be neither the chosen door nor the

one with the prize; (iii) we then observe that the host opens, e.g.,
the left door (𝐿); and, upon this, (iv) we renormalize the remaining

probabilities and conclude we should switch to the right door (𝑅):

it doubles our chances of getting the prize.

(i) 1

3
|𝐿⟩ + 1

3
|𝑀⟩ + 1

3
|𝑅⟩

(ii) 1

3
|𝐿⟩|𝑅⟩ + 1

6
|𝑀⟩|𝐿⟩ + 1

6
|𝑀⟩|𝑅⟩ + 1

3
|𝑅⟩|𝐿⟩

(iii) ����1

3
|𝐿⟩|𝑅⟩ + 1

6
|𝑀⟩|𝐿⟩ +����1

6
|𝑀⟩|𝑅⟩ + 1

3
|𝑅⟩|𝐿⟩

(iv) 1

3
|𝑀⟩|𝐿⟩ + 2

3
|𝑅⟩|𝐿⟩ .

The phenomenon we seek to study occurs at the last two steps.

We (iii) obtain something that is not a full distribution, but only

a subdistribution; and then (iv) we multiply by a constant— by

2, in this example— to obtain again a distribution. This interplay

between normalized and unnormalized distributions leads one to

pick substochastic kernels for probabilistic semantics: functions

𝑋 → DM𝑌 , for D the distribution monad andM the maybe monad.

However, we may wish to avoid substochasticity: if the last two

steps were compressed into one, subdistributions would never ap-

pear. Instead, we would work with normalized kernels, 𝑋 → MD𝑌 ,

yielding either nothing or a full distribution. May we compose

normalized kernels? Is that what we just did?

The quest for a category with normalized kernels as morphisms

has brought us multiple techniques. Let us review some.

(a) Work up-to-scalar. Two subdistributions, 𝑑1, 𝑑2 ∈ DM𝑋 ,

share their normalization whenever there exists some positive real

number, 𝜆 ∈ R+
, such that 𝑑1 (𝑥) = 𝜆 · 𝑑2 (𝑥). Working up-to-scalar

means bringing this idea to kernels [SS24, §6.2; PTRSZ25, Definition

2.9]: we identify two substochastic kernels, 𝑓1, 𝑓2 : 𝑋 → DM𝑌 , up

to scalar multiplication, 𝑓1 ≃ 𝑓2, whenever, for some positive real

𝜆 ∈ R+
, we have

𝑓1 (𝑥 ;𝑦) = 𝜆 · 𝑓2 (𝑥 ;𝑦) .
Although compositional, this quotienting does not identify a kernel

with its normalization: the normalization constant of a substochas-

tic kernels depends on the input.

(b) Work up-to-parameterized-scalar. The obvious solution
is to allow the normalization constant to depend on the input. In

practice, this identifies two kernels, 𝑓1 ≃ 𝑓2, whenever there exists

a family of positive reals, 𝜆(𝑥) ∈ R+
for each 𝑥 ∈ 𝑋 , satisfying

𝑓1 (𝑥 ;𝑦) = 𝜆(𝑥) · 𝑓2 (𝑥 ;𝑦).
This quotienting yields normalized kernels, 𝑋 → MD𝑌 , but it
stops being preserved by composition. Abstractly, the normalized

morphisms of any partial Markov category are not necessarily closed
under composition [DR23, Definitions 3.1 and 3.19].

(c) Work up-to-failure. A more radical solution does yield a

category: the so-called black-hole semantics [Fri09, SW18]. Black-

hole semantics arises from a valid distributive law casting any

subdistribution into a distribution,

(−)⊥ : DM𝑋 → MD𝑋 .

From an abstract point of view, the Kleisli category of this distribu-

tive law, the category of partial stochastic kernels, is the paradig-

matic example of a quasi-Markov category [FGL
+
25a, Sha25].

(𝑑)⊥ =

{
⊥, if 𝑑 (⊥) > 0;

𝑑, otherwise.

Alas, this distributive law is not helpful for our purposes: it returns

failure whenever the input is not a full distribution. Because it

equates any probability of failure to failure, we miss the solution to

any problem involving subdistributions.

Accepting Normalization. None of these solutions constructs
a category of normalized kernels. Should we continue this quest?

Have we missed further solutions? Fortunately, Sokolova and Wo-

racek classified all possible single-point extensions of distributions

[SW18], which allows us to identify the only functorial one: the

only candidate category of normalized kernels arises from working
up-to-failure; in other words, it has black-hole semantics.



Elena Di Lavore, Mario Román, and Márk Széles

Corollary 1.1 (from [SW18, Theorem 5.3]). Black-hole semantics
(Proposition 3.5) determines the only distributive law between the
distribution monad and the maybe monad, DM → MD.

This manuscript argues that we should embrace this result: there

is no category of normalized kernels, but a magmoid of normalized

kernels. Normalized kernel composition is non-associative.

Indeed, theMonty Hall problem admits another parenthesization.

Imagine we consider everything since the action of the host as a

parenthesized subproblem and we (iv) normalize internally before

(v) normalizing globally.

(i) 1

3
|𝐿⟩ + 1

3
|𝑀⟩ + 1

3
|𝑅⟩

(ii) 1

3
|𝐿⟩|𝑅⟩ + 1

3
|𝑀⟩ ( 1

2
|𝐿⟩ + 1

2
|𝑅⟩) + 1

3
|𝑅⟩|𝐿⟩

(iii) 1

3
|𝐿⟩��|𝑅⟩ + 1

3
|𝑀⟩ ( 1

2
|𝐿⟩ +���1

2
|𝑅⟩) + 1

3
|𝑅⟩|𝐿⟩

(iv) 1

3
|𝑀⟩|𝐿⟩ + 1

3
|𝑅⟩|𝐿⟩

(v) 1

2
|𝑀⟩|𝐿⟩ + 1

2
|𝑅⟩|𝐿⟩ .

In this case, (iii) we intervene to force the host to open the left

door— say, the game show halts otherwise. Because it is forced, the

host’s decision stops carrying any inferential information: we are

equally likely to see it no matter where the prize is.

The interpretation of the Monty Hall problem has been famously

controversial [Sel75, vS]. Arguably, the difference of interpreta-

tion is clearer knowing that normalized kernel composition is not

associative: when to normalize does change the result.

Still, normalized kernels have a rich algebraic structure: both

in the discrete and the continuous case, normalized kernels form

a monoidal non-associative category with copy-discard maps and

conditionals (Theorems 7.9 and 8.7). The category of substochastic

kernels acts on the non-associative category of normalized ker-

nels (Corollaries 4.13 and 8.6): updates act on priors. Normalization,

DM𝑋 → MD𝑋 , is almost a distributive law, and it interacts with

the actual distributive law of subdistributions (Theorems 4.7 and

8.4). Associativity may be unnecessary, after all: associative up-

dating semantics re-emerges from sytematic left-association. We

abstract all this algebra of normalized kernels, without associativity,

into a structure we dub a Markov magmoid.

1.1 Related work

Probabilistic programming semantics employs substochastic ker-

nels, starting with Kozen’s [Koz81] and Panangaden’s substochas-

tic variant of the Giry monad [Gir82, Pan99]. Since these, both

operational [PPT08, Par03, LZ12, WCGC18] and denotational se-

mantics [MPYW18, JLMZ21, VKS19] predominantly account for re-

jectionwith substochastic [BDGS16, FR19] or unnormalized kernels

[EPT17, EPT11, Sta17, DKPS23], with normalization sporadically

justifying program equations [SWY
+
16]. Probabilistic programming

languages either normalize as a program transformation [NCR
+
16],

or let their inference algorithms handle it [GMR
+
12, TvdMYW16].

Categorical probability theory, in a line of work starting from

Golubtsov, Cho and Jacobs, and Fritz, has abstracted stochastic

kernels into Markov categories [Gol99, CJ19, Fri20]. Further work
has abstracted substochastic kernels and partial stochastic kernels

into partial Markov categories [DR23] and quasi-Markov categories
[FGL

+
25b], respectively. In particular, string diagrammatic methods

can model Pearl’s causal interventions [Pea09] by syntactic substi-

tution [Fon13, JKZ21, FK23]. At the same time, multiple string dia-

grammatic axiomatizations of normalization have been proposed,

we highlight those in terms of normalization boxes [LT23, JSS25]
and partial Markov categories [DR23]. Simpson’s probability sheaves

constitute another approach to synthetic probability theory [Sim17,

Sim24]; for which Stein recently proposed a comparison [Ste25].

Jacobs’ hypernormalization [Jac17]— generalized by Garner via

tricocycloids [Gar18]— is an alternative to normalization: we relate

this approach to sesquilaws by proving that every tricocycloid

induces a sesquilaw (see Appendix, Theorem J.1), while not all

Set-based sesquilaws arise from a tricocycloid.

Magmoids and failing distributive laws are relatively infrequent:

Munch-Maccagnoni [Mun13] proposed a non-natural monad-co-

monad distributive law [MMM25] and its magmoid to unify call-

by-name and call-by-value. In probability, mass and chance inter-

pretations determine a non-natural distributive law, DD → DD
[TPAH25]. Weak distributive laws, instead, [Str09, Böh10, Gar20]

appear in imprecise probability [GP20, MSV21, LS24], as distribu-

tive laws are insufficient for systems with non-determinism and

probability [VW06]. In this non-deterministic case, with applica-

tions to probabilistic trace semantics [SS00, SS11, CMN
+
25], Bonchi,

Sokolova, and Vignudelli distinguished possibilistic monads for

may, must, and may-must semantics [DGHM09, BSV22]; via sup-

port (c.f. [FPR21]), we relate these to normalized kernels, partial

stochastic kernels, and substochastic kernels, respectively.

1.2 Contributions

Normalized kernels do not form a category (Proposition 2.6); we

introduce monoidal magmoids (Definition 2.12) — a coherent notion

of monoidal non-associative category— and we prove that norma-

lized kernels form a monoidal magmoid with extra structure that

we dub a Markov magmoid (Theorem 7.9). Normalization is not a

distributive law (Proposition 3.7); we introduce sesquilaws (Defini-

tion 4.6); we show that sesquilaws yield the renormalization axiom

(Theorem 4.8), a right monad action (Lemma 4.11), and a category

action on their magmoid (Theorem 4.12); we prove that normali-

zation forms a sesquilaw (Theorem 4.7). Moreover, we prove that

support is a morphism to the possibilistic sesquilaw (Proposition

5.6 and Corollary 5.9). In the continuous case, we prove that norma-

lized kernels form a sesquilaw and a Markov magmoid (Theorems

8.4 and 8.7).

Finally, we introduce commutativity for monoidal magmoids

(Definition 6.3) and their string diagrams (Theorem 6.7); we spe-

cialize the axioms of Markov magmoids to discrete probability

(Definition 9.1) and we derive a synthetic version of the back-door
and front-door adjustment formulas from causality theory (Proposi-

tions 9.6 and 9.8). We introduce a left-associative monadic notation

with magmoidal semantics (Definition 9.11) to compute problems

in causality theory (Example 9.13).

1.3 Synopsis

Section 2 introduces the monoidal magmoid of normalized kernels.

Section 3 is a background section on distributive laws, while Sec-

tion 4 introduces sesquilaws. Section 5 compares the probabilistic

and possibilistic cases. Section 6 develops commutative magmoids



The Magmoid of Normalized Stochastic Kernels

and their string diagrams. Section 7 introduces Markov magmoids.

Section 8 studies normalization in standard Borel spaces. Section 9

presents a specialized application to causality. We provide detailed

proofs in the Appendix.

2 Normalization

Normalization is difficult to classify categorically. While it is a

fundamental operation of probability theory, it is generally re-

garded as ill-behaved [Jac17]. While it induces a natural trans-

formation that braids the distribution (D) and maybe (M) mon-

ads, n𝑋 : DM𝑋 → MD𝑋 (Definition 2.2), it is not a distributive

law. And, while it induces a composition of normalized kernels,

(#)𝑋,𝑌,𝑍 : Norm(𝑋 ;𝑌 ) ×Norm(𝑌 ;𝑍 ) → Norm(𝑋 ;𝑍 ), it is not asso-
ciative.

This section explains this missing algebra: we introduce nor-

malization as a monoidal natural transformation in Section 2.1;

we recall non-associative categories and monoidal non-associative

categories in Sections 2.2 and 2.3; and we finally contribute a co-

herent notion of monoidal magmoid, that allows us to structure

normalized kernels, in Section 2.4.

2.1 Normalization

Normalization is inherently partial — it contains a potential division

by zero— but explicitly dealing with partiality is tedious. Instead,

note that normalized distributions are, equivalently, subdistribu-

tions adding up to exactly 0 or 1,

MD𝑋 �

{
𝑑 ∈ DM𝑋

����� ∑︁
𝑥∈𝑋

𝑑 (𝑥) = 0 or

∑︁
𝑥∈𝑋

𝑑 (𝑥) = 1

}
.

Under this interpretation, zero means failure.

Definition 2.1 (Bracketed division). Let us convene that[𝑢
𝑣

]
=

{
𝑢/𝑣 when 𝑣 ≠ 0,

0 when 𝑣 = 0.

Definition 2.2 (Normalization). Normalization is the natural trans-
formation, n𝑋 : DM𝑋 → MD𝑋 , defined by

n(𝑓 ) (𝑥) =
[

𝑓 (𝑥)∑
𝑥 ′∈𝑋 𝑓 (𝑥 ′)

]
.

Normalization is a monoidal natural transformation. Both the

finitary distribution monad (D) and the maybe monad (M) are mo-

noidal monads on sets: both their Kleisli categories, Stoch and Par,
are copy-discard categories. Normalization inherits this structure.

Proposition 2.3. Normalization, n𝑋 : DM𝑋 → MD𝑋 , is amonoidal
natural transformation. Normalization of independent distributions is
the joint normalization of the distributions, n(𝑓 ⊗ 𝑔) = n(𝑓 ) ⊗ n(𝑔).[

𝑓 (𝑥) · 𝑔(𝑦)∑
𝑢∈𝑋,𝑣∈𝑌 𝑓 (𝑢) · 𝑔(𝑣)

]
=

[
𝑓 (𝑥)∑

𝑢∈𝑋 𝑓 (𝑢)

]
·
[

𝑔(𝑦)∑
𝑣∈𝑌 𝑔(𝑣)

]
.

Were normalization to form a distributive law, its Kleisli category,

Norm, would also be monoidal. Perhaps surprisingly, normalization

fails to form a distributive law (see Proposition 3.7); and this poten-

tial Kleisli category is instead a Kleisli non-associative category.

2.2 Normalized kernels are not associative

Defining non-associative “categories” is straightforward: we repeat

the definition of category, but without associativity (c.f. [MMM25]).

Let us set aside any more technical definition for now and construct

the non-associative category of normalized kernels.

Definition 2.4 (Non-associative category). A non-associative cate-
gory, C, consists of collections of objects and morphisms, C(𝑋 ;𝑌 ),
for each two objects 𝑋,𝑌 ∈ C𝑜𝑏 𝑗 , equipped with a composition

operation, (#) : C(𝑋 ;𝑌 ) ×C(𝑌 ;𝑍 ) → C(𝑋 ;𝑍 ), and identities, id𝑋 ∈
C(𝑋 ;𝑋 ), that are unital, meaning that 𝑓 # id𝑌 = 𝑓 = id𝑋 # 𝑓 .

Proposition 2.5 (Non-associative category of normalized kernels).

Normalized kernels between sets,𝑋 → MD𝑌 , form a non-associative
category,Norm, where composition of twomorphisms, 𝑓 : 𝑋 → MD𝑌
and 𝑔 : 𝑌 → MD𝑍 , is defined by

(𝑓 # 𝑔) (𝑥 ; 𝑧) =
[ ∑

𝑣∈𝑌 𝑓 (𝑥 ; 𝑣) · 𝑔(𝑣 ; 𝑧)∑
𝑣∈𝑌

∑
𝑤∈𝑍 𝑓 (𝑥 ; 𝑣) · 𝑔(𝑣 ;𝑤)

]
.

In other words, if we consider the associated substochastic kernels,
𝑓 • : 𝑋 → DM𝑌 and 𝑔• : 𝑌 → DM𝑍 , it is the normalization of their
composition as subdistributions, 𝑓 # 𝑔 = n(𝑓 • ;;; 𝑔•).

Proposition 2.6. Normalized kernels are not associative.

Remark 2.7. It may be clarifying to symbolically check for associa-

tivity. Arguably, left-associated composition simplifies as expected,

((𝑓 # 𝑔) # ℎ) (𝑥 ;𝑤) =
[ ∑

𝑦,𝑧 𝑓 (𝑥 ;𝑦) · 𝑔(𝑦; 𝑧) · ℎ(𝑧;𝑤)∑
𝑦,𝑧,𝑤 𝑓 (𝑥 ;𝑦) · 𝑔(𝑦; 𝑧) · ℎ(𝑧;𝑤)

]
;

while right-associated composition may contain different normali-

zation constants on the numerator and the denominator, preventing

a similar simplification,

(𝑓 # (𝑔 # ℎ)) (𝑥 ;𝑤) =

∑

𝑦 𝑓 (𝑥 ;𝑦) ·
[ ∑

𝑧 𝑔 (𝑦;𝑧 ) ·ℎ (𝑧;𝑤 )∑
𝑧,𝑤 𝑔 (𝑦;𝑧 ) ·ℎ (𝑧;𝑤 )

]
∑

𝑦,𝑤 𝑓 (𝑥 ;𝑦) ·
[ ∑

𝑧 𝑔 (𝑦;𝑧 ) ·ℎ (𝑧;𝑤 )∑
𝑧,𝑤 𝑔 (𝑦;𝑧 ) ·ℎ (𝑧;𝑤 )

]  .
Because of this assymetry, left-associativity will later be our default.

2.3 Normalized kernels are monoidal

Monoidal non-associative categories can be defined naïvely (Def-

inition 2.8): functors and natural transformations work as usual.

Only coherence requires some care: the pentagon equation [ML71]

is ambiguous in the absence of associativity. Let us briefly post-

pone coherence— and braiding equations— to first construct the

monoidal non-associative category of normalized kernels.

Definition 2.8 (Monoidal non-associative category). A monoidal
non-associative category is a non-associative category, C, endowed
with binary and nullary functors, (⊗) : C × C → C and 𝐼 : 1 → C,
and natural isomorphisms for associativity, 𝛼𝑋,𝑌,𝑍 : (𝑋 ⊗𝑌 ) ⊗𝑍 →
𝑋 ⊗ (𝑌 ⊗ 𝑍 ), and unitality, 𝜆𝑋 : 𝐼 ⊗ 𝑋 → 𝑋 and 𝜌𝑋 : 𝑋 ⊗ 𝐼 → 𝑋 .

A monoidal non-associative category is symmetric when it is

moreover endowed with a natural isomorphism representing sym-

metry, 𝜎𝑋,𝑌 : 𝑋 ⊗ 𝑌 → 𝑌 ⊗ 𝑋 .

Proposition 2.9. Normalized kernels form a symmetric monoidal
non-associative category with the cartesian product, where the tensor
of 𝑓1 : 𝑋1 → 𝑌1 and 𝑓2 : 𝑋2 → 𝑌2 is given by

(𝑓1 ⊗ 𝑓2) (𝑥1, 𝑥2;𝑦1, 𝑦2) = 𝑓1 (𝑥1;𝑦1) · 𝑓2 (𝑥2;𝑦2) .



Elena Di Lavore, Mario Román, and Márk Széles

2.4 Magmoids

Let us now address coherence: coherence needs structural maps to

be associative, but associative morphisms are not even necessarily

closed under tensoring.

Still, we may explicitly pick a closed class of associative mor-

phisms:
1
we reserve the name magmoid, in this text, for a non-

associative category with a chosen subcategory of associative mor-

phisms (Definition 2.11), a concept that we introduce to address

coherence (Definition 2.12). Indeed, monoidal magmoids are coher-

ent thanks to this base monoidal category (Remark 2.13).

Definition 2.10 (Associative morphism). In a non-associative cat-

egory, a morphism 𝑓 : 𝑋 → 𝑌 is associative whenever, for each
𝑔1 : 𝑋1 → 𝑋 , each 𝑔2 : 𝑋2 → 𝑋1, each ℎ1 : 𝑌 → 𝑌1 and each

ℎ2 : 𝑌1 → 𝑌2, we have that (𝑔2 # 𝑔1) # 𝑓 = 𝑔2 # (𝑔1 # 𝑓 ), that
(𝑔1 # 𝑓 ) # ℎ1 = 𝑔1 # (𝑓 # ℎ1), and that (𝑓 # ℎ1) # ℎ2 = (𝑓 # ℎ1) # ℎ2.

Definition 2.11 (Magmoid). Amagmoid consists of a non-associative
categoryM, a category A, and an identity-on-objects functor,

(−)↑ : A → M,

whose image is associative.

Definition 2.12 (Monoidal magmoid). A monoidal magmoid con-
sists of a monoidal non-associative category (M, ⊗, 𝐼 ), a monoidal

category (A, ⊗, 𝐼 ), and an identity-on-objects functor strictly pre-

serving the monoidal structure, (−)↑ : A → M, whose image is

associative. A monoidal magmoid is symmetric when its category,

non-associative category, and functor are.

Remark 2.13 (Coherence for monoidal magmoids). Monoidal mag-

moids are strict when their base monoidal category is. As a conse-

quence, they can be strictified.
2

Even when normalized kernels do not associate, they do in some

useful cases (Proposition 2.14). In particular, functions are associa-

tive, and we pick them as the base monoidal category.

Proposition 2.14. In the normalization magmoid, the associativity
equation 𝑓 # (𝑔 # ℎ) = (𝑓 # 𝑔) # ℎ holds when either

(1) the kernel 𝑓 lifts a partial function, 𝑋 → M𝑌 , or
(2) the kernel 𝑔 lifts a partial function, 𝑋 → M𝑌 , or
(3) the kernel ℎ lifts a stochastic kernel, 𝑋 → D𝑌 .

In particular, associativity holds whenever any of the three lifts a
function 𝑋 → 𝑌 : functions are associative morphisms.

Proposition 2.15. Normalized kernels form a symmetric monoidal
magmoid over the category of sets and functions, (−)↑ : Set → Norm.

However, the monoidal magmoid of normalized kernels is spe-

cial: it satisfies properties that are not true in arbitrary monoidal

magmoids. To study these, we adapt distributive laws.

1
This technique is common in the categorical semantics of effectful programs [PR97,

Jef97, SL13], where one must distinguish a subclass of pure morphisms. Technically,

we use non-associative monoidal promonads.

2
Alternatively, monoidal magmoids are pseudomonoids of the bicategory of non-

associative promonads (c.f. [Bén00]), with associative natural transformations. By

coherence for pseudomonoids [Ver17], every monoidal magmoid is strictifiable.

3 Distributive Laws

Distributive laws [Bec69], their uses and limitations [ZM22], are

well-known. Briefly, the composition of two monads is not a monad

again— in general, the tensor of two monoids is not a monoid

again— but distributive laws endow this composition with monad

structure.

Definition 3.1 (Distributive law [Bec69], ). A distributive law
between two monads, (𝑆, 𝜇𝑆 , 𝜂𝑆 ) and (𝑇, 𝜇𝑇 , 𝜂𝑇 ), on the same cat-

egory is a natural transformation, 𝜓 : 𝑇𝑆 → 𝑆𝑇 , that makes the

following four diagrams commute.

𝑇𝑇𝑆𝑋 𝑇𝑆𝑋 𝑆𝑇𝑋

𝑇𝑆𝑇𝑋 𝑆𝑇𝑇𝑋

𝑇𝜓

𝜇𝑇 𝜓

𝜓𝑇
𝑆𝜇𝑇

(1)

𝑇𝑆𝑆𝑋 𝑇𝑆𝑋 𝑆𝑇𝑋

𝑆𝑇𝑆𝑋 𝑆𝑆𝑇𝑋

𝜓𝑆

𝑇 𝜇𝑆 𝜓

𝑆𝜓
𝜇𝑆𝑇

(2)

𝑇𝑋 𝑆𝑇𝑋

𝑇𝑆𝑋

𝑇𝜂𝑆

𝜂𝑆𝑇

𝜓

𝑆𝑋 𝑆𝑇𝑋

𝑇𝑆𝑋

𝜂𝑇 𝑆

𝑆𝜂𝑇

𝜓
(3, 4)

Definition 3.2 (Monoidal distributive law). Amonoidal distributive
law between twomonoidalmonads, (𝑆, 𝜇, 𝜂,𝑢, 𝑣) and (𝑇, 𝜇′, 𝜂′, 𝑢′, 𝑣 ′),
is a distributive law whose transformation, 𝜓𝑋 : 𝑇𝑆𝑋 → 𝑆𝑇𝑋 , is

monoidal.

Proposition 3.3 ([Bec69]). A distributive law, 𝜓𝑋 : 𝑇𝑆𝑋 → 𝑆𝑇𝑋 ,
between two monads, (𝑆, 𝜇𝑆 , 𝜂𝑆 ) and (𝑇, 𝜇𝑇 , 𝜂𝑇 ), induces a monad
structure on the composite functor 𝑆𝑇 . Given two monoidal monads,
a monoidal distributive law between them induces a monoidal monad
structure on the composite functor.

3.1 Example: substochastic kernels

Substochastic kernels, functions of the form 𝑋 → DM𝑌 , form a

monoidal category, subStoch, induced by a monoidal distributive

law,MD → DM. Thanks to this law, normalized kernels can be seen

as particular substochastic kernels with a different composition.

Proposition 3.4 (Subdistributions). Inclusion of normalized dis-
tributions into subdistributions, (−)• : MD𝑋 → DM𝑋 , defined on
distributions by (⊥)• = 1 |⊥⟩ and 𝑑• = 𝑑 and on morphisms by
𝑓 • (𝑥 ;𝑦) = 𝑓 (𝑥 ;𝑦), induces a monoidal distributive law.

Themonoidal Kleisli category of this distributive law is the category
of substochastic kernels, subStoch.

3.2 Example: partial stochastic kernels

Partial stochastic kernels, functions 𝑓 : 𝑋 → 𝑀𝐷𝑌 , correspond to

normalized kernels, albeit with a different composition operation.

The category of partial stochastic kernels, parStoch, composes two

normalized kernels, 𝑓 : 𝑋 → 𝑀𝐷𝑌 and 𝑔 : 𝑌 → 𝑀𝐷𝑍 , into

(𝑓 # 𝑔) (𝑥 ; 𝑧) =
[ ∑︁
𝑣,𝑧′∈𝑌

𝑓 (𝑥 ;𝑦) · 𝑔(𝑦; 𝑧′) = 1

]
·
∑︁
𝑦∈𝑌

𝑓 (𝑥 ;𝑦) · 𝑔(𝑦; 𝑧),

which, using Iverson brackets, is zero when not a full distribution.



The Magmoid of Normalized Stochastic Kernels

Proposition 3.5. The natural transformation (−)⊥ : DM → MD
defined by 𝑓 ⊥ (𝑥) = 𝑓 (𝑥) · [∑𝑥 𝑓 (𝑥) = 1], induces a monoidal dis-
tributive law. Its Kleisli category is the category of partial stochastic
kernels, parStoch.

Remark 3.6. Partial stochastic kernels are the paradigmatic exam-

ple of quasi-Markov category [FGL
+
25a, Sha25]. While this quasi-

Markov category plays a role in black-hole semantics, it does not

provide updating semantics nor it addresses the problem of norma-

lization: indeed, it is useful precisely because it marks with failure

whenever a normalization problem is encountered.

3.3 Counterexample: normalized kernels

Normalization satisfies all of the axioms of a distributive law, ex-

cept for one: the D-multiplicativity axiom. Next section develops

normalization not as a distributive law, but as a sesquilaw.

Proposition 3.7. Normalization is not a distributive law.

Proof. We show that D-multiplicativity fails. Consider the set

𝐴 = {𝑥,𝑦} and pick the following distribution over subdistributions:
1

2

�� 1
3
|𝑥⟩ + 2

3
|⊥⟩

〉
+ 1

2

�� 2
3
|𝑦⟩ + 1

3
|⊥⟩

〉
∈ DDM𝐴.

Computing both sides of the diagram in Equation 1 (Definition 3.1)

yields different expressions. On the left-hand side, we (i) normalize

internally, (ii) normalize externally and (iii) multiply.

1

2
| 1
3
|𝑥⟩ + 2

3
|⊥⟩⟩ + 1

2
| 2
3
|𝑦⟩ + 1

3
|⊥⟩⟩

(𝑖 ), by (Dn)
↦→ 1

2
| |𝑥⟩⟩ + 1

2
| |𝑦⟩⟩ + 0 |⊥⟩

(𝑖𝑖 ), by (nD)
↦→ 1

2
| |𝑥⟩⟩ + 1

2
| |𝑦⟩⟩

(𝑖𝑖𝑖 ), by (𝜇 )
↦→ 1

2
|𝑥⟩ + 1

2
|𝑦⟩ .

On the right-hand side, we (i) multiply and (ii) normalize.

1

2
| 1
3
|𝑥⟩ + 2

3
|⊥⟩⟩ + 1

2
| 2
3
|𝑦⟩ + 1

3
|⊥⟩⟩

(𝑖 ), by (𝜇 )
↦→ 1

6
|𝑥⟩ + 1

3
|⊥⟩ + 1

3
|𝑦⟩ + 1

6
|⊥⟩

(𝑖𝑖 ), by (n)
↦→ 1

3
|𝑥⟩ + 2

3
|𝑦⟩ .

However,
1

3
|𝑥⟩ + 2

3
|𝑦⟩ ≠ 1

2
|𝑥⟩ + 1

2
|𝑦⟩. □

4 Sesquilaws

Sesquilaws are a particular form of failing distributive law. We

define sesquilaws to be sections to an actual distributive law that

satisfy all distributive law axioms except for the first one, which is

only satisfied up to idempotent. In particular, because they fail one

of the axioms, they are almost-distributive laws.

4.1 Almost-distributive laws

An almost-distributive law could be any candidate distributive law

failing one of the axioms. Specifically, we could define non-𝑆-

multiplicative, non-𝑆-unital, non-𝑇 -multiplicative, and non-𝑇 -uni-

tal almost-distributive laws, respectively. In this terminology, a

weak distributive law [Str09, Böh10, Gar20, GP20] would be a non-𝑇 -

unital almost-distributive law or, sometimes, a non-𝑆-unital almost-

distributive law. For the rest of the text, however, let us focus on

non-𝑇 -multiplicative almost-distributive laws, and simply call them

almost-distributive laws.

Definition 4.1 (Almost-distributive law). An almost-distributive
law is a candidate distributive law, 𝜓 : 𝑇𝑆 → 𝑆𝑇 , failing the T-

multiplicativity axiom. A monoidal almost distributive law between

two monoidal monads is an almost-distributive law whose underly-

ing natural transformation is monoidal.

Definition 4.2 (Non-associative monad). A non-associative monad
over a category C consists of an endofunctor, 𝑇 : C → C, together
with natural transformations 𝜂𝑋 : 𝑋 → 𝑇𝑋 and 𝜇𝑋 : 𝑇𝑇𝑋 → 𝑇𝑋

satisfying the unitality equations,𝑇𝜂𝑋 #𝜇𝑋 = id𝑋 and𝜂𝑇𝑋 #𝜇𝑋 = id𝑋 ,

but not necessarily the multiplicativity equations. It is monoidal
whenever these transformations are.

Proposition 4.3. Almost-distributive laws,𝜓𝑋 : 𝑇𝑆𝑋 → 𝑆𝑇𝑋 , in-
duce non-associative monads on their composite functors, 𝑆𝑇 . Monoi-
dal almost distributive laws induce monoidal non-associative monads
on their composite functors.

Proposition 4.4 (Kleisli magmoids). Any non-associative monad,
(𝑅, 𝜇𝑅, 𝜂𝑅) over a category C, induces a magmoid, (C,K(𝑅)). Any
monoidal non-associative monad induces a monoidal magmoid.

Proposition 4.5. Normalization, n𝑋 : DM𝑋 → MD𝑋 , forms an
almost-distributive law.

Normalization, the monoidal almost-distributive law, induces

the Kleisli monoidal magmoid of normalized kernels, Norm. To-

gether with the distributive law describing subdistributions, we

have “one and a half” distributive laws that interact with each other:
a sesquilaw.

4.2 Sesquilaws

To recap, normalization, n(−) : DM → MD, satisfies all distribu-
tive law axioms except for the D-multiplicativity axiom. Still, nor-

malization satisfies an equation resembling this missing multipli-

cativity: n(n(𝑓 )• ;;; 𝑔) = n(𝑓 ;;; 𝑔), for any two substochastic ker-

nels. Careful inspection reveals that the D-multiplicativity axiom

holds up-to-an-idempotent: the distributive law of subdistributions,

(−)• : MD → DM, is the partial inverse inducing this idempotent.

Distributive sesquilaws—or, simply, sesquilaws— abstract this

situation with a single extra equation. This equation consists of

multiplicativity up to the idempotent determined by a section-

retraction pair of two distributive law candidates.

Definition 4.6 (Sesquilaw, ). A sesquilaw, (𝑆,𝑇 ,𝑚, 𝑛), between
twomonads (𝑆, 𝜇𝑆 , 𝜂𝑆 ) and (𝑇, 𝜇𝑇 , 𝜂𝑇 ), consists of a distributive law,
𝑚𝑋 : 𝑆𝑇𝑋 → 𝑇𝑆𝑋 , and an almost distributive law, 𝑛𝑋 : 𝑇𝑆𝑋 →
𝑆𝑇𝑋 , forming a section-retraction pair,𝑚 # 𝑛 = id, and making the

following diagram commute.

𝑇𝑇𝑆𝑋 𝑇𝑆𝑇𝑋 𝑆𝑇𝑇𝑋 𝑆𝑇𝑋

𝑇𝑆𝑇𝑋 𝑇𝑇𝑆𝑋 𝑇𝑆𝑋

𝑇𝑛

𝑇𝑛 𝑛𝑇 𝑆𝜇𝑇

𝑇𝑚 𝜇𝑇 𝑆
𝑛

Alternatively, but equivalently, a sesquilawmustmake the following

diagram commute.

𝑇𝑆𝑇𝑋 𝑆𝑇𝑇𝑋 𝑆𝑇𝑋

𝑇𝑇𝑆𝑋 𝑇𝑆𝑋

𝑇𝑚

𝑛𝑇 𝑆𝜇𝑇

𝜇𝑇 𝑆
𝑛



Elena Di Lavore, Mario Román, and Márk Széles

A sesquilaw is monoidal whenever its transformation is.

Theorem 4.7. Normalization and subdistributions form a sesquilaw.

A sesquilaw is enough to abstractly prove multiple useful facts

about normalization. For the rest of this section, we synthetically

derive structure from the sesquilaw axioms.

Theorem 4.8 (Renormalization). Any sesquilaw, (𝑆,𝑇 ,𝑚, 𝑛), in-
duces an idempotent, 𝑘 = (𝑛 # 𝑚) : 𝑇𝑆 → 𝑇𝑆 . This idempotent is
left-absorptive, meaning the following diagram commutes.

𝑇𝑆𝑇𝑆𝑋 𝑇𝑆𝑋 𝑇𝑆𝑋

𝑇𝑆𝑇𝑆𝑋 𝑇𝑆𝑋

𝑘𝑇𝑆

𝜇𝑇𝑆
𝑘

𝜇𝑇𝑆 𝑘

Corollary 4.9 (Renormalization). The following equation holds for
substochastic kernels (c.f. [DRS25, Proposition 3.12; SWY+16, §4.1]).

n(𝑓 ;;; 𝑔) = n(n(𝑓 ) ;;; 𝑔).
Remark 4.10. For instance, sequential Monte Carlo simulations nor-

malize and resample after each observation for efficiency reasons

[PW14, Algorithm 1]. Renormalization guarantees the soundness

of this transformation [SWY
+
16, §4.1].

Lemma 4.11. Any sesquilaw, (𝑆,𝑇 ,𝑚, 𝑛), induces a right action of
the monad 𝑇𝑆 into the non-associative monad 𝑆𝑇 : a natural trans-
formation, 𝑢𝑋 : 𝑆𝑇𝑇𝑆𝑋 → 𝑆𝑇𝑋, making the following two diagrams
commute.

𝑆𝑇𝑋 𝑆𝑇𝑇𝑆𝑋 𝑆𝑇𝑇𝑆𝑇𝑆𝑋 𝑆𝑇𝑇𝑆𝑋

𝑆𝑇𝑋 𝑆𝑇𝑇𝑆𝑋 𝑆𝑇𝑋

𝜂𝑇𝑆

id

𝑢

𝑆𝑇 𝜇𝑇𝑆

𝑢𝑇𝑆 𝑢

𝑢

This action is defined by either side of the following commutative
diagram.

𝑆𝑇𝑇𝑆𝑋 𝑆𝑇𝑆𝑋 𝑇𝑆𝑆𝑋

𝑇𝑆𝑇𝑆𝑋 𝑇𝑇𝑆𝑆𝑋 𝑇𝑆𝑋 𝑆𝑇𝑋

𝑚𝑇𝑆

𝑆𝜇𝑇 𝑆 𝑚𝑆

𝑇 𝜇𝑆

𝑇𝑚𝑆 𝜇𝑇 𝜇𝑆 𝑛

This general phenomenon for sesquilaws extends automatically

to the Kleisli magmoids induced by them: the Kleisli category of the

monad acts on the Kleisli magmoid of the non-associative monad.

Theorem 4.12. In the setting of a sesquilaw, (𝑆,𝑇 ,𝑚, 𝑛), the Kleisli
category of the distributive law, K(𝑚), acts on the Kleisli magmoid
of the almost distributive law, K(𝑛).
Corollary 4.13. Normalized kernels admit an action from sub-
stochastic kernels, defined by 𝑝 ⊳ 𝑓 = n(𝑝• ;;; 𝑓 ).

(⊳) : Norm(𝑋 ;𝑌 ) × subStoch(𝑌 ;𝑍 ) → Norm(𝑋 ;𝑍 ).
That is, satisfying 𝑝 ⊳ id = 𝑝 and 𝑝 ⊳ (𝑓 ;;; 𝑔) = 𝑝 ⊳ 𝑓 ⊳ 𝑔.

5 Possibilistic normalization

Probability and possibility are related by supports: the support of a

distribution is its subset of possible outcomes, forgetting about the

specific probabilities of any of them. So far, we have defined three

categories and one magmoid of probabilistic kernels; this section

defines their possibilistic analogues and relates them by a support

morphism.

Probabilistic Possibilistic

Stochastic kernel Affine relation

Substochastic kernel Subaffine relation

Partial stochastic kernel Partial affine relation

Normalized kernel Relation

Definition 5.1 (Affine powerset monad). The affine powerset mo-
nad (or, non-empty finitary powerset monad), R : Set → Set, assigns
to a set its non-empty finite subsets,

R𝑋 = {𝑈 ⊆ 𝑋 | 𝑈 finite, and𝑈 ≠ ∅}.
An affine relation, 𝑓 : 𝑋 → R𝑌 , is a finitary relation such that, for

each 𝑥 ∈ 𝑋 , there exists some 𝑦 ∈ 𝑌 related to it, 𝑓 (𝑥 ;𝑦). Affine

relations form a category, affRel, the Kleisli category of the affine

powerset monad. Note how the powerset functor is P𝑋 � MR𝑋 .

Definition 5.2. Post-selection, p(−) : RM𝑋 → MR𝑋 , is the natural

transformation that removes failure if it can and fails only if it must.

Explicitly, it is defined by p(𝐴∪ {⊥}) = p(𝐴) = 𝐴, for each𝐴 ∈ R𝑋 ,

and p({⊥}) = ∅. In other words, it is the join-preserving function

satisfying p({𝑥}) = {𝑥} and p({⊥}) = ∅.

Proposition 5.3. Post-selection is a monoidal sesquilaw.

5.1 Support, a sesquilaw homomorphism

Definition 5.4 (Support). The support of a distribution, 𝑑 ∈ D𝑋 ,
is the subset

supp𝑋 (𝑑) = {𝑥 | 𝑑 (𝑥) > 0},
which cannot be empty because 𝑑 is a full distribution. Support

determines a family of functions, supp𝑋 : D𝑋 → R𝑋 , that extends

to a natural transformation.

Definition 5.5 (Sesquilaw homomorphism). A sesquilaw homo-
morphism between two sesquilaws, (𝑆,𝑇 , •𝑇 , ◦𝑇 ) and (𝑆, 𝑅, •𝑅, ◦𝑅),
sharing their left monad, is a natural transformation 𝛼 : 𝑇 → 𝑅 that

is a monad homomorphism—meaning that 𝜇𝑇 #𝛼 = (𝛼 ·𝛼) # 𝜇𝑅 and

𝜂𝑇 # 𝛼 = 𝜂𝑅 —and that, moreover, commutes with the sesquilaw—

meaning that the following two diagrams commute.

𝑆𝑇 𝑆𝑅

𝑇𝑆 𝑅𝑆

•𝑇

𝑆𝛼

•𝑅
𝛼𝑆

𝑆𝑇 𝑆𝑅

𝑇𝑆 𝑅𝑆

𝑆𝛼

𝛼𝑆

◦𝑇 ◦𝑅

Proposition 5.6. Support, supp𝑋 : D𝑋 → R𝑋 , is a sesquilaw ho-
momorphism between normalization and post-selection.

5.2 Subaffine relations, partial affine relations

The possibilistic analogues of substochastic kernels (subStoch) and

partial stochastic kernels (parStoch) are two lesser-known cate-

gories of relations: may-must relations [BSV22] (which we call sub-
affine relations), helpful in trace semantics; and Dijkstra relations
[CM09] (or, partial affine relations), helpful for program logics.

Definition 5.7 (Subaffine relations). The category subRel of sub-
affine relations (or, may-must relations) has, as morphisms, the

failure-contemplating relations, 𝑓 : 𝑋 → RM𝑌 , and composition

(;;;) is defined by

(𝑓 ;;; 𝑔) (𝑥 ; 𝑧) = ∃𝑦∈𝑌 𝑓 (𝑥 ;𝑦) ∧ 𝑔(𝑦; 𝑧),
(𝑓 ;;; 𝑔) (𝑥 ;⊥) = 𝑓 (𝑥 ;⊥) ∨ ∃𝑦∈𝑌 𝑓 (𝑥 ;𝑦) ∧ 𝑔(𝑦;⊥).



The Magmoid of Normalized Stochastic Kernels

Definition 5.8 (Partial affine relations, [CM09, 5.14]). The category

of partial affine relations (or, relations with Dijkstra composition),
parRel, has relations as morphisms, 𝑓 : 𝑋 → MR𝑌 , but composition

(★) is instead defined by the formula

(𝑓 ★𝑔) (𝑥 ; 𝑧) = (∃𝑦∈𝑌 𝑓 (𝑥 ;𝑦) ∧ 𝑔(𝑦; 𝑧))∧
(�𝑦∈𝑌 𝑓 (𝑥 ;𝑦) ∧ 𝑔(𝑦;⊥)),

where 𝑔(𝑦;⊥) means that 𝑔(𝑦) = ⊥. In other words, composition

fails if there is a possibility for it to fail.

Corollary 5.9 (Support functors). Support extends to four strict
monoidal identity-on-objects functors.

(1) supp : Stoch → affRel;
(2) supp : subStoch → subRel;
(3) supp : parStoch → parRel;
(4) supp : Norm → Rel.

Arguably, then, the stochastic analogue of the category of re-

lations is the magmoid of normalized kernels, even if it is only a

magmoid. Conversely, from this point of view, what is unexpected

is that the magmoid of relations happens to be a category.

6 Left and right commutativivity

Probabilistic programming with monoidal magmoids raises sub-

tleties. For instance, we expect commutativity for probabilistic pro-

grams [Sta17,WCGC18, JLMZ21]: reordering the lines of a program

must not change its meaning, as long as the lines do not depend

on each other. That is, whenever 𝑥 is free in 𝑡 and 𝑦 is free in 𝑠 , the

following equation holds.� �
Do ... p

x <- s
y <- t
... q� �=

� �
Do ... p

y <- t
x <- s
... q� �

In terms of string diagrams, boxes may pass each other, as long

as no directed path exists between them.

𝑎

𝑏

𝑠

𝑡

𝑎

𝑏

𝑠

𝑡
=

(5)

Commutativity is usually identified with monoidality and, specifi-

cally, with the interchange equation, (𝑠 ⊗ id) # (id ⊗ 𝑡) = (id ⊗ 𝑡) #
(𝑠 ⊗ id). Perhaps surprisingly, magmoids distinguish monoidality

and two analogues of commutativity.

Let us introduce, in Section 6.1, left commutative magmoids and

right commutative magmoids, two analogues of commutativity in

the magmoidal case. In Section 6.2, we derive string diagrams for

left commutative magmoids.

Remark 6.1 (Intermediate boxes). Before continuing, let us pick

the convention—motivated by Remark 2.7— that string diagrams

are, implicitly, left-associative.
3
This means that, to describe right-

associating composition, we must write it explicitly, inside its own

box; we depict these intermediate box as blue boxes.

𝑓

≠𝑔

ℎ

𝑓

𝑔

ℎ

=

𝑓

𝑔

ℎ

This is much in the same way that, when declaring that a binary

operation— say, composition (#)— is left-associative, we must use

parentheses only to express right-associating composition.

𝑓 # (𝑔 # ℎ) ≠ 𝑓 # 𝑔 # ℎ = (𝑓 # 𝑔) # ℎ.

6.1 Commutative magmoids

Commutativity does not follow from monoidality. Indeed, reading

the string diagrams in Equation (5), we obtain the two following

expressions, which are not equated by the axioms of monoidal

magmoids.

((𝑎 # (𝑠 ⊗ id)) # (id ⊗ 𝑡)) # 𝑏 ≠ ((𝑎 # (id ⊗ 𝑡)) # (𝑠 ⊗ id)) # 𝑏.

Thus, commutativity becomes an independent axiom.

Definition 6.2 (Commutative non-associative monad). A com-
mutative non-associative monad, (𝑇, 𝜇, 𝜂,𝑢, 𝑣), is a monoidal non-
associative monad such that the following two rectangles commute.

𝑇𝑇 (𝑇𝑋 ⊗ 𝑌 ) 𝑇 (𝑇𝑋 ⊗ 𝑌 ) 𝑇𝑇 (𝑋 ⊗ 𝑌 )

𝑇 (𝑇𝑋 ⊗ 𝑇𝑌 ) 𝑇𝑇 (𝑋 ⊗ 𝑌 ) 𝑇 (𝑋 ⊗ 𝑌 )

𝑇𝑇 (𝑋 ⊗ 𝑇𝑌 ) 𝑇 (𝑋 ⊗ 𝑇𝑌 ) 𝑇𝑇 (𝑋 ⊗ 𝑌 )

𝜇 𝑇𝜎𝐿

𝜇𝑇𝜎𝑅

𝑇𝜎𝐿

𝑇𝑢 𝜇

𝜇 𝑇𝜎𝑅

𝜇

Here, 𝜎𝐿 = (id ⊗ 𝜂) # 𝑢 and 𝜎𝑅 = (𝜂 ⊗ id) # 𝑢 are the left and right

strengths of the monad.

Definition 6.3 (Left commutative magmoid). A left commutative
magmoid is a monoidal magmoid such that

(𝑓 # (𝑔 ⊗ id)) # (id ⊗ ℎ) = 𝑓 # (𝑔 ⊗ ℎ);
(𝑓 # (id ⊗ ℎ)) # (𝑔 ⊗ id) = 𝑓 # (𝑔 ⊗ ℎ);

while a right commutative magmoid is such that

(𝑓 ⊗ id) # ((id ⊗ 𝑔) # ℎ) = (𝑓 ⊗ 𝑔) # ℎ;
(𝑓 # (id ⊗ ℎ)) # (𝑔 ⊗ id) = 𝑓 # (𝑔 ⊗ ℎ).

Proposition 6.4 (Monoidal monads are commutative). A monoidal
(associative!) monad is, in particular, a commutative non-associative
monad. In other words, in the presence of associativity, monoidality
and commutativity coincide.

Proposition 6.5. Monoidal sesquilaws induce commutative non-
associative monads. Commutative non-associative monads induce
Kleisli left commutative magmoids.
3
A similar discussion holds if we were to pick the opposite precendence: we would

develop a theory of right commutative diagrams. This theory would be less convenient

for our purposes, as we shall see later.



Elena Di Lavore, Mario Román, and Márk Széles

Remark 6.6. Commutative non-associative monads do not induce

right commutative magmoids: in fact, normalized kernels form a left

commutative magmoid that is not a right commutative magmoid.

6.2 String diagrams for commutative magmoids

Let us close this section by formalizing string diagrams for com-

mutative magmoids. We prove that commutative magmoids are

non-multiplicative algebras of string diagrams. This means that we

have an interpretation for each string diagram of morphisms in

a commutative magmoid, but this interpretation is not invariant

under substitution. As a result, we need to keep the intermediate

boxes of Remark 6.1.

Theorem 6.7. Left commutative magmoids are non-multiplicative
algebras of the string diagrams monad over tensor schemas, in the
sense of Joyal and Street [JS91, Definition 1.4].

Moreover, these algebras satisfy the following equations for any
two diagrams 𝛼 and 𝛽 : we call them (i) left-bias, and (ii) monoidality.

𝛼
(𝑖𝑖 )
=

𝛽

(𝑖 )
=

𝛽

𝛼 𝛼

𝛽

𝛾

𝛼 𝛽

𝛾

Remark 6.8 (Reading string diagrams). The reader unfamiliar with

string diagrams may prefer reading them directly as normalized

kernels. One can read string diagram boxes as kernels by assigning

a variable to each one of the wires that appear on it: all inner wires
(those that do not touch the boundaries of the box) must be bound

to a summation; all nodes (regarding any inner boxes as nodes)

must be multiplied together; and the whole expression must be

normalized at the end. As a shortcut, multiple wires connected by a

copy or delete node are regarded as a single wire (c.f. [JS91, FL23]).

For instance, the left-hand side of the previous monoidality ax-

iom (ii) reads as follows. It contains five wires: the input 𝑥 ; two
inner wires, 𝑢1 and 𝑢2; and two outputs, 𝑦 and 𝑧. At the outer level,

it contains three nodes: 𝛾 , and two boxes for 𝛼 and 𝛽 . We multiply

these three nodes together, we sum over the inner wires, and, fi-

nally, we divide by the same expression, now summing also over

outputs.
∑

𝑢1,𝑢2
𝛾 (𝑥 ;𝑢1, 𝑢2) ·

[
𝛼 (𝑢1 ;𝑦)∑′
𝑦 𝛼 (𝑢1 ;𝑦′ )

]
·
[

𝛽 (𝑢2 ;𝑧 )∑
𝑧′ 𝛽 (𝑢2 ;𝑧′ )

]
∑

𝑢1,𝑢2,𝑦,𝑧
𝛾 (𝑥 ;𝑢1, 𝑢2) ·

[
𝛼 (𝑢1 ;𝑦)∑′
𝑦 𝛼 (𝑢1 ;𝑦′ )

]
·
[

𝛽 (𝑢2 ;𝑧 )∑
𝑧′ 𝛽 (𝑢2 ;𝑧′ )

] 
Remark 6.9 (Normalization boxes). The previous result explains

the emergence of normalization boxes in categorical probability

[LT23, JSS25, DRS25]. String diagrams are insufficient to modulate

the non-associativity of normalization, and multiple authors— even

without arguing for a magmoid structure— employ these boxes.
4

4
Note, however, that the one presented here is different from other axiomatizations of

normalization boxes [LT23, JSS25]. In particular, normalization is not asked to be the

identity on quasitotal morphisms, which allows post-selection to become an example.

7 Markov magmoids

Until here, we studied general monoidal magmoids. Let us focus on

the structure most relevant to probability. Markov magmoids are

those commutative magmoids admitting conditionals, a synthetic

analogue of Bayesian disintegration [CJ19, Fri20]. While inspired

by Markov categories, we need to carefully adapt their definition

to account for updates and non-associativity. Let us incrementally

build it.

We first introduce the sesquilaw analogue of copy-discard cate-

gories: copy-discard sesquilaws, which separate an affine monad

for probability and a relevant monad for partiality.

7.1 Copy-discard magmoids

In a cartesian monoidal category, morphisms can be freely copied

and discarded [Fox76]. Copy-discard sesquilaws are a specialized

form of sesquilaw where one of the monad carries discardable

effects (affine: total but non-deterministic) and the other carries

copyable effects (relevant: partial but deterministic). For these two

classes of effects, we have two classes of monads.

Definition 7.1 (Affine & relevant monoidal monads, [Jac94]). A

monoidal monad, (𝑇, 𝜇, 𝜂,𝑢, 𝑣), over a cartesian monoidal category

(C,×, 1, 𝛿, 𝜀), is affine (or, total) whenever 𝛿𝐷𝑋 # 𝑢𝑋,𝑋 =𝑇𝛿𝑋 ; and it

is relevant (or, deterministic) whenever 𝜀𝐷𝑋 # 𝑣 =𝑇𝜀𝑋 .
5

Definition 7.2 (Copy-discard sesquilaw). A copy-discard sesqui-
law, (𝑆,𝑇 ,𝑚, 𝑛), is a monoidal sesquilaw over a cartesian monoidal

category, (C,×, 1, 𝛿, 𝜀), between an affine monad, (𝑇, 𝜇𝑇 , 𝜂𝑇 , 𝑢𝑇 , 𝑣𝑇 ),
and a relevant monad, (𝑆, 𝜇𝑆 , 𝜂𝑆 , 𝑢𝑆 , 𝑣𝑆 ).

Definition 7.3 (Copy-discard magmoid). A copy-discard magmoid,
(−)↑ : C → M, is a symmetric commutative magmoid whose base,

(C,×, 1, 𝛿, 𝜀), is cartesian monoidal.

7.2 Quasitotal magmoids

An important axiom of Markov categories [Fri20] is totality: the
unused output of a kernel can be discarded without affecting the

computation. Totality can be refined to account for updates: the

resulting notion is quasitotality [DR23, Sha25].

Definition 7.4 (Quasitotal magmoid). A quasitotal magmoid is

a copy-discard magmoid in which every morphism is quasito-

tal [DR23, Definition 3.1], meaning that it satisfies the following

equation stating that it is discardable after copied.

𝑓 𝑓 𝑓=

Proposition 7.5. Any copy-discard sesquilaw induces a quasito-
tal magmoid. As a corollary, normalized kernels are quasitotal: and,
exemplifying Remark 6.8, the following equation holds for any nor-
malized kernel 𝑓 : 𝑋 → MD𝑌 .[ ∑

𝑦′ 𝑓 (𝑥 ;𝑦) · 𝑓 (𝑥 ;𝑦′)∑
𝑦,𝑦′ 𝑓 (𝑥 ;𝑦) · 𝑓 (𝑥 ;𝑦′)

]
= 𝑓 (𝑥 ;𝑦) .

5
Equivalently, a monad is affine exactly when 𝜂1 : 1 → 𝑇 1 is an isomorphism. While

the usual formulation of affine and relevant monads is in terms of strength [Jac94], we

only require their monoidal version.



The Magmoid of Normalized Stochastic Kernels

Still, we have four types of morphisms in a quasitotal magmoid:

(i) base morphisms which can be copied and discarded; (ii) total
morphisms (affine), which can be discarded but not copied; (iii)
deterministic morphisms (relevant), which can be copied but not

discarded; and (iv) quasitotal morphisms.

𝑓 (i,iii)
= 𝑓 𝑓

𝑓(i,ii)
=;

Our next axiom states how these associate; it has no correlate in

Markov categories, where associativity is not an issue.

Definition 7.6 (Left-relevant magmoid). A left-relevant magmoid
is a copy-discard magmoid that satisfies associativity, 𝑓 # (𝑔 # ℎ) =
(𝑓 #𝑔) #ℎ, if either 𝑓 is deterministic, 𝑔 is deterministic, or ℎ is total.

𝑓

=𝑔

ℎ

𝑓

𝑔

ℎ

7.3 Markov magmoids

Markov magmoids are well-behaved copy-discard magmoids that

admit Bayesian inverses: in synthetic probability theory, the dis-

tinguishing axiom allowing Bayesian inverses is the existence of

conditionals [CJ17, Fri20].

Definition 7.7 (Conditional). A copy-discard magmoid admits

conditionals if, for any morphism 𝑓 : 𝑋 → 𝑌 ⊗ 𝑍 there exists some

𝑐 : 𝑋 ⊗ 𝑌 → 𝑍 that recovers its second output conditioned on the

first, meaning that the following holds.

=𝑓

𝑓
𝑋

𝑋

𝑌 𝑍
𝑐

𝑌 𝑍

Definition 7.8 (Markov magmoid). A Markov magmoid is a left-
relevant quasitotal magmoid admitting conditionals.

Theorem 7.9. Normalized kernels form a Markov magmoid.

Remark 7.10. Markov magmoid are more expressive and structured

than copy-discard sesquilaws; still, most notions of probabilistic

kernel — discrete or continuous— admit this extra structure. Let us

now develop a continuous example of Markov magmoid: that of

standard Borel spaces.

8 Normalization in standard Borel spaces

Normalization fails associativity analogously in the continuous

case. Let us address measurable spaces next, applying the theory of

sesquilaws. The discrete case remains conceptually clearer, though,

and we will return to it for the last sections.

This section details the measurable case. We restrict all construc-

tions to standard Borel spaces, which later ensure the existence of

conditionals.

Definition 8.1 (Giry monad, [Law62, Gir82]). The functor tak-

ing a measurable space to the set of probability measures over it,

D : BorelMes → BorelMes, forms a monad, (D, 𝜂, 𝜇), whose unit,
𝜂𝑋 : 𝑋 → D𝑋 , is the Dirac delta, 𝜂𝑋 (𝑥) = 𝛿 (𝑥 ;−), and whose mul-

tiplication, 𝜇𝑋 : DD𝑋 → D𝑋 , is given by Lebesgue integration,

𝜇𝑋 (Ω) (𝑈 ) =
∫
𝜈∈D𝑋

𝜈 (𝑈 ) · Ω(d𝜈) .

It is moreover an affine monoidal monad over the cartesian mo-

noidal structure of measurable sets, with the following product of

measures,

(𝜈1 ⊗ 𝜈2) (𝑈 ) =
∫
𝑦∈𝑌

(∫
𝑥∈𝑋

𝜉𝑈 (𝑥,𝑦) · 𝜈1 (d𝑥)
)
· 𝜈2 (d𝑦),

here, 𝜉 is the indicator function and the product is commutative by

the Fubini theorem. We work with the Kleisli category of the Giry

monad restricted to standard Borel spaces, BorelStoch.

Normalization is a section to the distributive law that induces

Panangaden’s variant of the Giry monad.

Definition 8.2 (Panangaden monad, [Pan99, §3]). Standard Borel

spaces admit coproducts and thus aMaybemonad,M : BorelMes →
BorelMes. There exists a distributive law, (−)•

𝑋
: DM𝑋 → MD𝑋 ,

yielding a monad structure onDM (c.f. [DR23]); its Kleisli category

is BorelSubstoch.

Instead of rederiving all of the properties of normalization, we

can now use the framework of sesquilaws we just developed.

Definition 8.3 (Continuous normalization). Normalization is the

natural transformation N𝑋 : DM𝑋 → MD𝑋 defined by

N(𝜈) (𝑈 ) =
[
𝜈 (𝑈 )
𝜈 (𝑋 )

]
.

Theorem 8.4. Normalization induces a monoidal sesquilaw.

Corollary 8.5 (Magmoid of normalized kernels). Normalized ker-

nels between standard Borel spaces, 𝑋 → MD𝑌 , form a monoidal
non-associative category, BorelNorm, where composition of two ker-
nels, 𝑓 : 𝑋 → MD𝑌 and 𝑔 : 𝑌 → MD𝑍 , is defined by

(𝑓 # 𝑔) (𝑥 ;𝑈 ) =
[ ∫

𝑦∈𝑌 𝑔(𝑦;𝑈 ) · 𝑓 (𝑥 ; d𝑦)∫
𝑦∈𝑌 𝑔(𝑦;𝑍 ) · 𝑓 (𝑥 ; d𝑦)

]
.

In other words, if we consider the associated substochastic kernels,
𝑓 • : 𝑋 → DM𝑌 and 𝑔• : 𝑌 → DM𝑍 , it is the normalization of
their composition, 𝑓 #𝑔 = N(𝑓 • ;;; 𝑔•). The tensor of normalized kernels
coincides with the usual one: we define (𝑓1 ⊗ 𝑓2) ((𝑥1, 𝑥2);𝑈 ) as∫

𝑦2∈𝑌2

(∫
𝑦1∈𝑌1

𝜉𝑈 (𝑦1, 𝑦2) · 𝑓 (𝑥1; d𝑦2)
)
· 𝑓2 (𝑥2; d𝑦2),

The monoidal magmoid of normalized kernels, BorelNorm, has the
cartesian monoidal category of standard Borel measurable spaces at
its base, BorelMes.



Elena Di Lavore, Mario Román, and Márk Széles

Corollary 8.6. Normalized kernels between standard Borel spaces
admit a monoidal category action from substochastic kernels that is
compatible with the tensor, defined by

(𝑝 ⊳ 𝑓 ) (𝑥 ;𝑈 ) =
[ ∫

𝑦∈𝑌 𝑓 (𝑦;𝑈 ) · 𝑝 (𝑥 ; d𝑦)∫
𝑦∈𝑌 𝑓 (𝑦;𝑍 ) · 𝑝 (𝑥 ; d𝑦)

]
.

That is, satisfying (𝑝1 ⊳ 𝑓1) ⊗ (𝑝2 ⊳ 𝑓2) = (𝑝1 ⊗ 𝑝2) ⊳ (𝑓1 ⊗ 𝑓2), with
𝑝 ⊳ id = 𝑝 and 𝑝 ⊳ (𝑓 ;;; 𝑔) = 𝑝 ⊳ 𝑓 ⊳ 𝑔.

Theorem 8.7. BorelNorm is a Markov magmoid.

Remark 8.8. Simplifying left-associating composition requires the

monotone convergence theorem, exactly as associativity of the Giry

monad does [Pan09, Proposition 5.2].

9 Discrete Markov magmoids

Markov magmoids can thus be discrete, or continuous. The discrete

case allows for some more structure: essentially, it allows us to

compare two values. Comparators in the continuous case, while

available, collapse: e.g., if we sample two values from a normal

distribution, 𝑋1 ∼ N(0, 1) and 𝑋2 ∼ N(0, 1), then 𝑃 (𝑋1 = 𝑋2) = 0.

This section introduces discrete Markov magmoids and then, in

Section 9.1, it employs their structure to derive results about causal

inference: specifically, we prove the back-door formula (Proposition
9.6) and the front-door formula (Proposition 9.8). We conclude with

an implementation in Section 9.2.

Definition 9.1 (Discrete copy-discard magmoid). A discrete copy-
discard magmoid is a copy-discard magmoid endowed with com-
parators, idempotent commutative semimonoids 𝜇𝑋 : 𝑋 ⊗ 𝑋 → 𝑋

such that 𝜇𝑋⊗𝑌 = (id ⊗ 𝜎 ⊗ id) # (𝜇𝑋 ⊗ 𝜇𝑌 ) and 𝜇𝐼 = id, depicted as

a black two-input dot, satisfying the partial Frobenius equations.

= =

Comparators allow, in the discrete case, to characterize which

normalized kernels have full support. That is, when, from each

𝑥 ∈ 𝑋 , there is a non-zero possibility of sampling each 𝑦 ∈ 𝑌 ,

meaning that 𝑓 (𝑥 ;𝑦) > 0 for every 𝑦 ∈ 𝑌 .

Definition 9.2 (Full support). A morphism of a discrete copy-

discard magmoid, 𝑓 : 𝑋 → 𝑌 , has full support whenever the follow-
ing equation holds.

𝑓
=

In the following sense, comparators can be used to force the value

of a wire: sampling a value from any channel and then comparing

with 𝑥0 ∈ 𝑋 outputs 𝑥0. In the next section, we shall see how this

forcing can act both an evidential update or a causal intervention,

depending on associativity.

Proposition 9.3 (Exact observations). In any discrete Markov
magmoid, the exact observation induced by any base morphism,
𝑥 : 1 → 𝑋 , is the morphism 𝑥? : 𝑋 → 1 defined as follows.

𝑥? =
𝑥

Exact observations satisfy the following equation.

𝑥? =
𝑥

𝑥?

Definition 9.4. A discrete Markov magmoid is a left-relevant qua-
sitotal discrete copy-discard magmoid admitting conditionals.

Remark 9.5 (Failure of right commutativity). We mentioned in Sec-

tion 6.1 that normalized kernels do not form a right commutative

magmoid. We now have the language to produce a direct coun-

terexample. Consider two coins with different non-trivial biases,

e.g., 𝑓 = 1/2 |𝑎⟩ + 1/2 |𝑏⟩ and 𝑔 = 1/3 |𝑎⟩ + 2/3 |𝑏⟩.

𝑔 ≠

𝑓

𝑓
=

𝑔

𝑔

𝑓 =

Here, we use that both coins have full support.

9.1 Inference in Discrete Markov Magmoids

Discrete Markov magmoids allow us to prove basic lemmas for syn-

thetic causal inference (c.f. [Pea09]). As a feature, they distinguish

between interventions and observations by reparenthesizing.

Jacobs, Széles, and Stein [JSS25] have recently shown how par-

tial Markov categories [DR23], extended with normalization boxes

[LT23], can be applied to synthetic causality (c.f. [YZ22, Pie23]). We

now derive synthetic causality from the axioms of discrete Markov

magmoids.

Proposition 9.6 (Back-door adjustment formula). In a discrete
Markov magmoid, let a joint state, 𝑝 : 1 → 𝑈 ⊗ 𝑋 ⊗ 𝑌 , admit the
following factorization into total morphisms where, moreover, 𝑓 has
full support.

𝑝

𝑓

𝑔

ℎ

=

Then, the following equation holds.

𝑓

ℎ

𝑔

𝑥?

=

𝑝

𝑥?

𝑝

Corollary 9.7. Let any distribution, 𝑝 , with full support, on three
visible variables,𝑈 , 𝑋 , and 𝑌 , such that𝑈 influences 𝑋 and 𝑌 , and
that 𝑋 influences 𝑌 . Then, an intervention on 𝑋 can be rewritten as

𝑝do(𝑥 ) (𝑦) =
∑︁
𝑢

∑︁
𝑥 ′,𝑦′

𝑝 (𝑢, 𝑥 ′, 𝑦′) · 𝑝 (𝑢, 𝑥,𝑦)∑
𝑦′∈𝑌 𝑝 (𝑢, 𝑥,𝑦′) .



The Magmoid of Normalized Stochastic Kernels

Pearl’s front-door formula [Pea09] is slightly more complicated,

and its proof uses all the axioms of Markov magmoids.

Proposition 9.8 (Front-door adjustment formula). In a discrete
Markov magmoid, let a joint state, 𝑝 : 1 → 𝑋 ⊗ 𝑍 ⊗ 𝑌 , admit the
following factorization into total morphisms where, moreover, both 𝑡
and (𝑔 # 𝑠) below have full support.

𝑝

𝑔

𝑠

𝑡

𝑐

=

Then, the following equation holds.

𝑔

𝑠

𝑡

𝑐

𝑥? =

𝑝𝑝

𝑥?

𝑝

In other words, an intervention on the variable 𝑋 can be rewritten as
a composition, in the Markov magmoid, of the observational data.

Corollary 9.9. Given any normalized distribution, 𝑝 , on three visible
variables, 𝑋 , 𝑍 and 𝑌 , and one hidden variable 𝑈 , assume that 𝑈
only influences 𝑋 and 𝑌 , and that the influence of 𝑋 on 𝑌 is entirely
mediated by 𝑍 .

𝑝do 𝑥 (𝑦) =
∑︁
𝑧

∑
𝑦′ 𝑝 (𝑥, 𝑧,𝑦′)∑

𝑦′,𝑧′ 𝑝 (𝑥, 𝑧′, 𝑦′)
·
∑︁

𝑥 ′,𝑦′,𝑧′

𝑝 (𝑥 ′, 𝑧,𝑦)∑
𝑦′ 𝑝 (𝑥 ′, 𝑧,𝑦′)

·𝑝 (𝑥 ′, 𝑧′, 𝑦′)

9.2 Magmoidal programming

Inference problems may also be described in a programming lan-

guage; this section extends the monadic metalanguage to the mag-

moidal case. The monadic metalanguage is implicitly right-associa-

tive,
6
but we will also define— and mostly use— a left-associative

version. This novelty means that the language admits a normalized
by construction semantics.

For the rest of the paper, definitions and computations are also

implemented in the attached Racket v9.0 code ( , [DRS26]).

Definition 9.10 (Right do-notation ). Almost monadic right-

associating do-notation, for a Set-based almost monad, (𝑇, 𝜇, 𝜂), is
inductively defined by the following two clauses, for any element

𝑥 ∈ 𝑋 and any computation 𝑓 ∈ 𝑇𝑋 , with 𝑥 any variable potentially

6
Indeed, only right-associative do-notation is implemented in functional programming

languages, e.g. Haskell. The rationale is that only lawful monads may be considered.

bound in the do-notation expression 𝑝 .� �
rDo T

return x� �≡ 𝜂 (𝑥);� �
rDo T

x <- f
p ...� �≡ (𝜆𝑥.

� �
rDo T

p ...� �)† (𝑓 ) .
Definition 9.11 (Left do-notation ). Almost monadic left associ-

ating do-notation, for an almost monad𝑇 : Set → Set, is inductively
defined by strengthening the induction hypothesis accumulating

an expression 𝑎 and a variable 𝑥 ,� �
accDo t x a

return y� �≡
� �
rDo t

x <- a
return y� �� �

accDo t x a
y <- f
p ...� �≡

� �
accDo t (y . x)

(rDo t
x <- a
y <- f
return (y . x))

return y� �
and finally evaluating on an empty accumulated expression.� �

lDo t
p ...� �≡

� �
accDo m '()

(rDo m
return '())

p ...� �
In other words, we left-fold the statements.

Example 9.12 (Monty Hall problem, ). As we saw in the intro-

duction, the Monty Hall problem has two solutions, depending

on associativity. Consider the following left-associated program:

each of the non-zero numbered lines corresponds exactly to each

computation step we took in the Introduction (Section 1).� �
0 lDo Norm
1 car <- (uniform 'left 'middle 'right)
2 opened <- (host car 'middle)
3 '() <- (observe opened 'left)
4 return car� �

Left-associating do-notation gives the usual answer to the Monty

Hall problem: that changing doors is twice as likely to get the prize.

Evaluating the previous expression, we obtain 1/3 |𝐿⟩ + 2/3 |𝑅⟩ .
Expanding the program according to Definition 9.11 yields the

following nested program.� �
rDo Norm

'(opened car) <- (rDo Norm
'(opened car) <- (rDo Norm

'(opened car) <- (rDo Norm
'(car) <- (rDo Norm

'() <- (rDo Norm
return '())

'(car) <- (uniform 'left 'middle 'right)
return '(car))

opened <- (host car 'middle)
return '(opened car))

(observe opened 'left)
return '(opened car))

return '(opened car))
return car� �



Elena Di Lavore, Mario Román, and Márk Széles

Because of the failure of associativity, this is different from the

program we would obtain just by reading the original Monty Hall

problem in a right-associative fashion. Instead, right-associating

do-notation answers that we are equally likely to win on any of the

two doors: 1/2 |L⟩ + 1/2 |R⟩ .� �
rDo Norm

car <- (uniform 'left 'middle 'right)
opened <- (host car 'middle)
'() <- (observe opened 'left)
return car� �

The reader will notice that, conversely, we could simulate this right-

associating do-notation block in terms of nested left-associating

do-notation.� �
lDo Norm

car <- (uniform 'left 'middle 'right)
opened <- (lDo Norm

opened <- (host car 'middle)
'() <- (observe opened 'left)
return opened)

return car� �
Example 9.13 (Smoking causes cancer, ). Let us take a classical

example from Pearl’s work on causality. The following (unrealistic)

observational data could perhaps suggest that smoking has an

innocuous or protective effect on cancer.

Survey no-cancer cancer

smoker tar 323 57

smoker no-tar 18 2

nonsmoker tar 1 19

nonsmoker no-tar 38 342

To actually quantify the effect of smoking on cancer, in principle,

we would need data extracted from an interventional study forcing

patients to smoke—which, previsibly, we want to avoid. That is,

we would need to compute the left-hand side of the concluding

equation of Proposition 9.8. Instead, by Proposition 9.8, we may

compute the right-hand side, which gets translated as follows.� �
lDo Norm

z <- (lDo Norm
(list xi z yi) <- p
'() <- (observe xq xi)
return z)

x <- (lDo Norm
(list x zi yi) <- p
return x)

y <- (lDo Norm
(list xi zi y) <- p
'() <- (observe x xi)
'() <- (observe z zi)
return y)

return y� �
Using only survey data, we compute that — even with unrealistic ob-

servational data— the incidence of cancer for a smoker (219/400 |𝐶⟩+
181/400 |𝑁𝐶⟩) is larger than that for a non-smoker (201/400 |𝐶⟩ +
199/400 |𝑁𝐶⟩). We shall conclude that smoking causes cancer.

From this perspective, causal inference is the resolution of equa-

tions in discrete Markov magmoids. Alternatively to most prob-

abilistic programming literature, we do not use a normalization

operator, but the ability to modulate associativity of a Markov mag-

moid.

10 Conclusions

Normalization has been under-explored in categorical probability

theory and denotational probabilistic semantics; most inference

semantics either ignore normalization—preferring substochastic

kernels or unnormalized kernels instead—or treat it as an ad-hoc

operator, a feature of the semantics.

As a result, most semantic universes for probabilistic program-

ming are not normalized by construction. We have introduced the

Markov magmoid of normalized stochastic kernels as a first ex-

ample of normalized by construction denotational semantics for

probabilistic inference.

Our proposed explanation for this gap is that normalization

arises from a failure of associativity, and failures of associativity

are counterintuitive. For instance, we could naïvely say that, to

solve an inference problem, one must (1) set up a prior distribution,

(2) compute a stochastic kernel, and (3) update the prior with the

observation. This description misses an essential point: how to

associate these instructions or, in other words, when to normalize.
Any normalized probablistic semantics needs to clearly address this

point, and a revision of existing categorical probabilitic semantics to

understand their potential non-associative behaviour is warranted.

While non-associativity could seem too high of a price to pay,

being explicit about associativity has conceptual advantages: it

makes it possible to derive multiple properties of normalization

from a few axioms— rendering the continuous case much simpler

than it would be otherwise— and it allows us to distinguish between

observations and interventions as two different parenthesizations

of the same expression.

We abstracted this algebra by introducing sesquilaws: almost-

distributive laws that are multiplicative only up to idempotent. That

normalization is not a distributive law may be folklore, but it seems

absent from the literature. We went one step further and classified

this particular failure of normalization.

Monoidal sesquilaws induce commutative magmoids, another

newly introduced notion refining the non-associative case. For

commutative magmoids, we provided both a graphical calculus

and a programming notation. Remarkably, these seem to mostly

coincide— although not exactly—with the existing string diagram-

matic calculi for normalization over partial Markov categories [DR23,
LT23, JSS25]; we ground these axiomatizations in formal category

theory via sesquilaws and commutative magmoids.

Finally, we proposed a different approach to categorical causal-

ity: we saw how solving causality problems corresponds to solving

equations on a discrete Markov magmoid. While Pearl’s do-calculus,
more than a synthetic axiomatization, is a collection of rules on top

of probabilistic reasoning, we propose an algebraic presentation

of the rules needed to discuss causality problems. Further work

on automating these solutions— e.g. via rewriting, showing com-

pleteness for identifiability— is warranted and not covered by this

manuscript; it is a promising avenue for a categorical semantics of

causality and causal programming.

More generally, we reassert — as weak distributive laws, duploids,

or mass-chance interpretations do— that failing distributive laws

contain, in many cases, mathematical structure worth studying on

its own.



The Magmoid of Normalized Stochastic Kernels

Acknowledgements

We thank Soichiro Fujii, Bart Jacobs, Jack Liell-Cock, Paolo Perrone,

Seo Jin Park, Zev Shirazi, Ana Sokolova, Sam Staton, Yun Chen

Tsai, and Ruben van Belle for discussion on earlier drafts of this

article.

References

[BDGS16] Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin

Szymczak. A lambda-calculus foundation for universal probabilistic

programming. In Jacques Garrigue, Gabriele Keller, and Eijiro Sumii,

editors, Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming, ICFP 2016, Nara, Japan, September 18-22,
2016, pages 33–46. ACM, 2016. doi:10.1145/2951913.2951942.

[Bec69] Jon Beck. Distributive laws. In Seminar on triples and categorical
homology theory, pages 119–140. Springer, 1969.

[Bén00] Jean Bénabou. Distributors at work. Lecture notes written by Thomas
Streicher, 11, 2000.

[Böh10] Gabriella Böhm. The weak theory of monads. Advances in Mathematics,
225(1):1–32, 2010.

[BSV22] Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. The theory of

traces for systems with nondeterminism, probability, and termination.

Logical Methods in Computer Science, 18(2), 2022. doi:10.46298/LMCS-

18(2:21)2022.

[CJ17] Kenta Cho and Bart Jacobs. Kleisli semantics for conditioning in

probabilistic programming. 2017.

[CJ19] Kenta Cho and Bart Jacobs. Disintegration and Bayesian Inversion via

String Diagrams. Mathematical Structures in Computer Science, pages
1–34, March 2019, 1709.00322. doi:10.1017/S0960129518000488.

[CM09] Robin Cockett and Ernie Manes. Boolean and classical restriction

categories. Mathematical Structures in Computer Science, 19(2):357–416,
2009. doi:10.1017/S0960129509007543.

[CMN
+
25] Corina Cîrstea, Lawrence S. Moss, Victoria Noquez, Todd Schmid,

Alexandra Silva, and Ana Sokolova. A complete inference system for

probabilistic infinite trace equivalence. In EACSL Annual Conference
on Computer Science Logic (CSL), 2025. doi:10.4230/LIPICS.CSL.2025.30.

[DGHM09] Yuxin Deng, Rob J. van Glabbeek, Matthew Hennessy, and Carroll

Morgan. Testing finitary probabilistic processes. In Mario Bravetti and

Gianluigi Zavattaro, editors, CONCUR 2009 - Concurrency Theory, 20th
International Conference, CONCUR 2009, Bologna, Italy, September 1-4,
2009. Proceedings, volume 5710 of Lecture Notes in Computer Science,
pages 274–288. Springer, 2009. doi:10.1007/978-3-642-04081-8_19.

[DKPS23] Swaraj Dash, Younesse Kaddar, Hugo Paquet, and Sam Staton. Affine

monads and lazy structures for bayesian programming. Proc. ACM
Program. Lang., 7(POPL):1338–1368, 2023. doi:10.1145/3571239.

[DR23] Elena Di Lavore and Mario Román. Evidential decision theory via

partial markov categories. In 38th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2023, Boston, MA, USA, June 26-29, 2023,
pages 1–14. IEEE, 2023. doi:10.1109/LICS56636.2023.10175776.

[DRS25] Elena Di Lavore, Mario Román, and Paweł Sobociński. Partial Markov

categories. arXiv preprint, 2025. doi:10.48550/arXiv.2502.03477.
[DRS26] Elena Di Lavore, Mario Román, and Márk Széles. Racket v9.0 Imple-

mentation of the Markov Magmoid of Normalized Stochastic Kernels,

2026. doi:10.5281/zenodo.18348005.

[EPT11] Thomas Ehrhard, Michele Pagani, and Christine Tasson. The compu-

tational meaning of probabilistic coherence spaces. In Proceedings of
the 26th Annual IEEE Symposium on Logic in Computer Science, LICS
2011, June 21-24, 2011, Toronto, Ontario, Canada, pages 87–96. IEEE
Computer Society, 2011. doi:10.1109/LICS.2011.29.

[EPT17] Thomas Ehrhard, Michele Pagani, and Christine Tasson. Measur-

able cones and stable, measurable functions: a model for probabilistic

higher-order programming. Proceedings of the ACM on Programming
Languages, 2(POPL):1–28, 2017. doi:10.1145/3158147.

[FGL
+
25a] Tobias Fritz, Tomáš Gonda, Antonio Lorenzin, Paolo Perrone, and

Areeb Shah Mohammed. Empirical measures and strong laws of large

numbers in categorical probability. arXiv preprint arXiv:2503.21576,
2025.

[FGL
+
25b] Tobias Fritz, TomásGonda, Antonio Lorenzin, Paolo Perrone, andAreeb

Shah-Mohammed. Empirical measures and strong laws of large num-

bers in categorical probability. CoRR, abs/2503.21576, 2025, 2503.21576.
doi:10.48550/ARXIV.2503.21576.

[FK23] Tobias Fritz and Andreas Klingler. The d-separation criterion in cat-

egorical probability. J. Mach. Learn. Res., 24:46:1–46:49, 2023. URL

https://jmlr.org/papers/v24/22-0916.html.

[FL23] Tobias Fritz and Wendong Liang. Free GS-Monoidal categories and

free Markov categories. Applied Categorical Structures, 31(2):21, 2023.

doi:10.1007/S10485-023-09717-0.

[Fon13] Brendan Fong. Causal Theories: A Categorical Perspective on Baye-

sian Networks. Master’s Thesis, University of Oxford. ArXiv preprint
arXiv:1301.6201, 2013.

[Fox76] Thomas Fox. Coalgebras and Cartesian Categories. Communications
in Algebra, 4(7):665–667, 1976.

[FPR21] Tobias Fritz, Paolo Perrone, and Sharwin Rezagholi. Probability, valua-

tions, hyperspace: Three monads on top and the support as a morphism.

Mathematical Structures in Computer Science, 31(8):850–897, 2021.
[FR19] Claudia Faggian and Simona Ronchi Della Rocca. Lambda calculus

and probabilistic computation. In 34th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June
24-27, 2019, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785699.

[FR20] Tobias Fritz and Eigil Fjeldgren Rischel. Infinite products and zero-one

laws in categorical probability. Compositionality, 2:3, 2020.
[Fri09] Tobias Fritz. Convex spaces I: Definition and examples. arXiv preprint

arXiv:0903.5522, 2009.
[Fri20] Tobias Fritz. A synthetic approach to Markov kernels, conditional

independence and theorems on sufficient statistics. Advances in Math-
ematics, 370:107239, 2020, 1908.07021.

[Gar18] Richard Garner. Abstract hypernormalisation, and normalisa-

tion-by-trace-evaluation for generative systems. arXiv preprint
arXiv:1811.02710, 2018, 1811.02710.

[Gar20] Richard Garner. The Vietoris monad and weak distributive laws. Ap-
plied Categorical Structures, 28(2):339–354, 2020.

[Gir82] Michèle Giry. A categorical approach to probability theory. In Cate-
gorical aspects of topology and analysis, pages 68–85. Springer, 1982.

[GMR
+
12] Noah D. Goodman, Vikash Mansinghka, Daniel M. Roy, Kallista A.

Bonawitz, and Joshua B. Tenenbaum. Church: a language for generative

models. CoRR, abs/1206.3255, 2012, 1206.3255. URL http://arxiv.org/

abs/1206.3255.

[Gol99] Petr Viktorovich Golubtsov. Axiomatic description of categories of

information transformers. Problemy Peredachi Informatsii, 35(3):80–98,
1999.

[GP20] Alexandre Goy and Daniela Petrisan. Combining weak distributive

laws: Application to up-to techniques. CoRR, abs/2010.00811, 2020,
2010.00811.

[Jac94] Bart Jacobs. Semantics of weakening and contraction. Annals of Pure
and Applied Logic, 69(1):73–106, 1994. doi:https://doi.org/10.1016/0168-
0072(94)90020-5.

[Jac17] Bart Jacobs. Hyper normalisation and conditioning for discrete

probability distributions. Log. Methods Comput. Sci., 13(3), 2017.
doi:10.23638/LMCS-13(3:17)2017.

[Jef97] Alan Jeffrey. Premonoidal categories and flow graphs. Electron. Notes
Theor. Comput. Sci., 10:51, 1997. doi:10.1016/S1571-0661(05)80688-7.

[JKZ21] Bart Jacobs, Aleks Kissinger, and Fabio Zanasi. Causal inference via

string diagram surgery: A diagrammatic approach to interventions

and counterfactuals. Mathematical Structures in Computer Science,
31(5):553–574, 2021.

[JLMZ21] Xiaodong Jia, Bert Lindenhovius, Michael W. Mislove, and Vladimir

Zamdzhiev. Commutative monads for probabilistic programming lan-

guages. In 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–14. IEEE,
2021. doi:10.1109/LICS52264.2021.9470611.

[JS91] André Joyal and Ross Street. The geometry of tensor calculus,

I. Advances in Mathematics, 88(1):55–112, 1991. doi:10.1016/0001-

8708(91)90003-P.

[JSS25] Bart Jacobs, Márk Széles, and Dario Stein. Compositional inference

for Bayesian networks and causality. In Mathematical Foundations of
Programming Semantics, 2025.

[Koz81] Dexter Kozen. Semantics of probabilistic programs. J. Comput. Syst.
Sci., 22(3):328–350, 1981. doi:10.1016/0022-0000(81)90036-2.

[Law62] F William Lawvere. The category of probabilistic mappings. Unpub-
lished preprint, 1962. Preprint available online, at https://ncatlab.org/
nlab/files/lawvereprobability1962.pdf.

[LS24] Jack Liell-Cock and Sam Staton. Compositional impre-

cise probability. CoRR, abs/2405.09391, 2024, 2405.09391.

doi:10.48550/ARXIV.2405.09391.

[LT23] Robin Lorenz and Sean Tull. Causal models in string diagrams, 2023,

2304.07638.

[LZ12] UgoDal Lago andMargherita Zorzi. Probabilistic operational semantics

for the lambda calculus. RAIRO Theor. Informatics Appl., 46(3):413–450,
2012. doi:10.1051/ITA/2012012.

[ML71] Saunders Mac Lane. Categories for the Working Mathematician, vol-
ume 5 of Graduate Texts in Mathematics. Springer Verlag, 1971.

doi:10.1007/978-1-4757-4721-8.

http://dx.doi.org/10.1145/2951913.2951942
http://dx.doi.org/10.46298/LMCS-18(2:21)2022
http://dx.doi.org/10.46298/LMCS-18(2:21)2022
http://arxiv.org/abs/1709.00322
http://dx.doi.org/10.1017/S0960129518000488
http://dx.doi.org/10.1017/S0960129509007543
http://dx.doi.org/10.4230/LIPICS.CSL.2025.30
http://dx.doi.org/10.1007/978-3-642-04081-8_19
http://dx.doi.org/10.1145/3571239
http://dx.doi.org/10.1109/LICS56636.2023.10175776
http://dx.doi.org/10.48550/arXiv.2502.03477
http://dx.doi.org/10.5281/zenodo.18348005
http://dx.doi.org/10.1109/LICS.2011.29
http://dx.doi.org/10.1145/3158147
http://arxiv.org/abs/2503.21576
http://dx.doi.org/10.48550/ARXIV.2503.21576
https://jmlr.org/papers/v24/22-0916.html
http://dx.doi.org/10.1007/S10485-023-09717-0
http://dx.doi.org/10.1109/LICS.2019.8785699
http://arxiv.org/abs/1908.07021
http://arxiv.org/abs/1811.02710
http://arxiv.org/abs/1206.3255
http://arxiv.org/abs/1206.3255
http://arxiv.org/abs/1206.3255
http://arxiv.org/abs/2010.00811
http://dx.doi.org/https://doi.org/10.1016/0168-0072(94)90020-5
http://dx.doi.org/https://doi.org/10.1016/0168-0072(94)90020-5
http://dx.doi.org/10.23638/LMCS-13(3:17)2017
http://dx.doi.org/10.1016/S1571-0661(05)80688-7
http://dx.doi.org/10.1109/LICS52264.2021.9470611
http://dx.doi.org/10.1016/0001-8708(91)90003-P
http://dx.doi.org/10.1016/0001-8708(91)90003-P
http://dx.doi.org/10.1016/0022-0000(81)90036-2
https://ncatlab.org/nlab/files/lawvereprobability1962.pdf
https://ncatlab.org/nlab/files/lawvereprobability1962.pdf
http://arxiv.org/abs/2405.09391
http://dx.doi.org/10.48550/ARXIV.2405.09391
http://arxiv.org/abs/2304.07638
http://dx.doi.org/10.1051/ITA/2012012
http://dx.doi.org/10.1007/978-1-4757-4721-8


Elena Di Lavore, Mario Román, and Márk Széles

[MMM25] Éléonore Mangel, Paul-André Melliès, and Guillaume Munch-

Maccagnoni. Classical notions of computation and the Hasegawa-

Thielecke theorem. arXiv preprint arXiv:2502.13033, 2025.
[MPYW18] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank

Wood. An introduction to probabilistic programming. CoRR,
abs/1809.10756, 2018, 1809.10756.

[MSV21] Matteo Mio, Ralph Sarkis, and Valeria Vignudelli. Combining nondeter-

minism, probability, and termination: Equational and metric reasoning.

In 36th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–14. IEEE, 2021.
doi:10.1109/LICS52264.2021.9470717.

[Mun13] Guillaume Munch-Maccagnoni. Syntax and Models of a non-Associative
Composition of Programs and Proofs. (Syntaxe et modèles d’une com-
position non-associative des programmes et des preuves). PhD the-

sis, Paris Diderot University, France, 2013. URL https://tel.archives-

ouvertes.fr/tel-00918642.

[NCR
+
16] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh

Shan, and Robert Zinkov. Probabilistic inference by program transfor-

mation in Hakaru (system description). In International Symposium
on Functional and Logic Programming - 13th International Symposium,
FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings, pages 62–79.
Springer, 2016. doi:10.1007/978-3-319-29604-3_5.

[Pan99] Prakash Panangaden. The Category of Markov Kernels. Elec-
tronic Notes in Theoretical Computer Science, 22:171–187, January 1999.

doi:10.1016/S1571-0661(05)80602-4.

[Pan09] Prakash Panangaden. Labelled Markov Processes. Imperial College

Press, 2009.

[Par03] Sungwoo Park. A calculus for probabilistic languages. In Zhong Shao

and Peter Lee, editors, Proceedings of TLDI’03: 2003 ACM SIGPLAN
International Workshop on Types in Languages Design and Implementa-
tion, New Orleans, Louisiana, USA, January 18, 2003, pages 38–49. ACM,

2003. doi:10.1145/604174.604180.

[Pea09] Judea Pearl. Causality. Cambridge University Press, 2009.

[Pie23] Robin Piedeleu. Basic causal inference via string diagrams. Blog post,
2023. Available at https://piedeleu.com/posts/diagrammatic-

causal-inference/. Accessed on January 2026. Archived at

https://web.archive.org/web/20241116235642/https://piedeleu.

com/posts/diagrammatic-causal-inference/.

[PPT08] Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic

language based on sampling functions. ACM Trans. Program. Lang.
Syst., 31(1):4:1–4:46, 2008. doi:10.1145/1452044.1452048.

[PR97] John Power and Edmund Robinson. Premonoidal categories and no-

tions of computation. Math. Struct. Comput. Sci., 7(5):453–468, 1997.
doi:10.1017/S0960129597002375.

[PTRSZ25] Robin Piedeleu, Mateo Torres-Ruiz, Alexandra Silva, and Fabio Zanasi.

A complete axiomatisation of equivalence for discrete probabilistic

programming. In European Symposium on Programming, pages 202–
229. Springer, 2025.

[PW14] Brooks Paige and Frank D.Wood. A compilation target for probabilistic

programming languages. In Proceedings of the 31th International Con-
ference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014,
volume 32 of JMLR Workshop and Conference Proceedings, pages 1935–
1943. JMLR.org, 2014. URL http://proceedings.mlr.press/v32/paige14.

html.

[Sel75] Steve Selvin. Letters to the editor. The American Statistician, 29(1):67–
71, 1975. doi:10.1080/00031305.1975.10479121.

[Sha25] Areeb Shah Mohammed. Partializations of Markov categories, 2025,

2509.05094. URL https://arxiv.org/abs/2509.05094.

[Sim17] Alex Simpson. Probability sheaves and the Giry monad. In Filippo

Bonchi and Barbara König, editors, 7th Conference on Algebra and Coal-
gebra in Computer Science, CALCO 2017, Ljubljana, Slovenia, June 12-16,
2017, volume 72 of LIPIcs, pages 1:1–1:6. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/LIPICS.CALCO.2017.1.

[Sim24] Alex Simpson. Equivalence and conditional independence in atomic

sheaf logic. In Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza,

editors, Proceedings of the 39th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2024, Tallinn, Estonia, July 8-11, 2024, pages
70:1–70:14. ACM, 2024. doi:10.1145/3661814.3662132.

[SL13] Sam Staton and Paul Blain Levy. Universal properties of impure pro-

gramming languages. In Roberto Giacobazzi and Radhia Cousot, edi-

tors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25,
2013, pages 179–192. ACM, 2013. doi:10.1145/2429069.2429091.

[SS00] Eugene W Stark and Scott A Smolka. A complete axiom system for

finite-state probabilistic processes. In Proof, language, and interaction:
essays in honour of Robin Milner, pages 571–595. 2000.

[SS11] Alexandra Silva and Ana Sokolova. Sound and complete axiomati-

zation of trace semantics for probabilistic systems. In Michael W.

Mislove and Joël Ouaknine, editors, Twenty-seventh Conference on
the Mathematical Foundations of Programming Semantics, MFPS 2011,
Pittsburgh, PA, USA, May 25-28, 2011, volume 276 of Electronic
Notes in Theoretical Computer Science, pages 291–311. Elsevier, 2011.
doi:10.1016/J.ENTCS.2011.09.027.

[SS24] Dario Stein and Sam Staton. Probabilistic programming with exact

conditions. J. ACM, 71(1):2:1–2:53, 2024. doi:10.1145/3632170.

[Sta17] Sam Staton. Commutative semantics for probabilistic programming. In

European Symposium on Programming, pages 855–879. Springer, 2017.
[Ste25] Dario Stein. Random variables, conditional independence and cate-

gories of abstract sample spaces. In 40th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2025, Singapore, June 23-26, 2025,
pages 472–484. IEEE, 2025. doi:10.1109/LICS65433.2025.00042.

[Str09] Ross Street. Weak distributive laws. Theory and Applications of Cate-
gories, 22:313–320, 2009.

[SW18] Ana Sokolova and Harald Woracek. Termination in convex sets of dis-

tributions. Log. Methods Comput. Sci., 14(4), 2018. doi:10.23638/LMCS-

14(4:17)2018.

[SWY
+
16] Sam Staton, Frank Wood, Hongseok Yang, Chris Heunen, and Ohad

Kammar. Semantics for probabilistic programming: higher-order func-

tions, continuous distributions, and soft constraints. In 2016 31st annual
ACM/IEEE Symposium on Logic in Computer Science (LiCS), pages 1–10.
IEEE, 2016.

[TPAH25] Yun Chen Tsai, Kittiphon Phalakarn, S. Akshay, and Ichiro Hasuo.

Chance and mass interpretations of probabilities in markov deci-

sion processes. In Patricia Bouyer and Jaco van de Pol, editors,

36th International Conference on Concurrency Theory, CONCUR 2025,
Aarhus, Denmark, August 26-29, 2025, volume 348 of LIPIcs, pages
33:1–33:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2025.

doi:10.4230/LIPICS.CONCUR.2025.33.

[TvdMYW16] David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank D.

Wood. Design and implementation of probabilistic programming lan-

guage anglican. In Tom Schrijvers, editor, Proceedings of the 28th
Symposium on the Implementation and Application of Functional Pro-
gramming Languages, IFL 2016, Leuven, Belgium, August 31 - September
2, 2016, pages 6:1–6:12. ACM, 2016. doi:10.1145/3064899.3064910.

[Ver17] Dominic Verdon. Coherence for braided and symmetric pseu-

domonoids. CoRR, abs/1705.09354, 2017, 1705.09354.
[VKS19] Matthijs Vákár, Ohad Kammar, and Sam Staton. A domain theory

for statistical probabilistic programming. Proceedings of the ACM on
Programming Languages, 3(POPL):1–29, 2019.

[vS] Marilyn vos Savant. Parade 16: Ask Marilyn (Archived). https:

//web.archive.org/web/20130121183432/http://marilynvossavant.

com/game-show-problem/. Accessed: 2013-01-21.

[VW06] Daniele Varacca and Glynn Winskel. Distributing probability over

non-determinism. Math. Struct. Comput. Sci., 16(1):87–113, 2006.
doi:10.1017/S0960129505005074.

[WCGC18] Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and

Andrew Cobb. Contextual equivalence for a probabilistic language

with continuous random variables and recursion. Proc. ACM Program.
Lang., 2(ICFP):87:1–87:30, 2018. doi:10.1145/3236782.

[YZ22] Yimu Yin and Jiji Zhang. Markov categories, causal theories, and the

do-calculus, 2022, 2204.04821.

[ZM22] Maaike Zwart and Dan Marsden. No-go theorems for distributive

laws. Logical Methods in Computer Science, Volume 18, Issue 1, Jan 2022.

doi:10.46298/lmcs-18(1:13)2022.

http://arxiv.org/abs/1809.10756
http://dx.doi.org/10.1109/LICS52264.2021.9470717
https://tel.archives-ouvertes.fr/tel-00918642
https://tel.archives-ouvertes.fr/tel-00918642
http://dx.doi.org/10.1007/978-3-319-29604-3_5
http://dx.doi.org/10.1016/S1571-0661(05)80602-4
http://dx.doi.org/10.1145/604174.604180
https://piedeleu.com/posts/diagrammatic-causal-inference/
https://piedeleu.com/posts/diagrammatic-causal-inference/
https://web.archive.org/web/20241116235642/https://piedeleu.com/posts/diagrammatic-causal-inference/
https://web.archive.org/web/20241116235642/https://piedeleu.com/posts/diagrammatic-causal-inference/
http://dx.doi.org/10.1145/1452044.1452048
http://dx.doi.org/10.1017/S0960129597002375
http://proceedings.mlr.press/v32/paige14.html
http://proceedings.mlr.press/v32/paige14.html
http://dx.doi.org/10.1080/00031305.1975.10479121
http://arxiv.org/abs/2509.05094
https://arxiv.org/abs/2509.05094
http://dx.doi.org/10.4230/LIPICS.CALCO.2017.1
http://dx.doi.org/10.1145/3661814.3662132
http://dx.doi.org/10.1145/2429069.2429091
http://dx.doi.org/10.1016/J.ENTCS.2011.09.027
http://dx.doi.org/10.1145/3632170
http://dx.doi.org/10.1109/LICS65433.2025.00042
http://dx.doi.org/10.23638/LMCS-14(4:17)2018
http://dx.doi.org/10.23638/LMCS-14(4:17)2018
http://dx.doi.org/10.4230/LIPICS.CONCUR.2025.33
http://dx.doi.org/10.1145/3064899.3064910
http://arxiv.org/abs/1705.09354
https://web.archive.org/web/20130121183432/http://marilynvossavant.com/game-show-problem/
https://web.archive.org/web/20130121183432/http://marilynvossavant.com/game-show-problem/
https://web.archive.org/web/20130121183432/http://marilynvossavant.com/game-show-problem/
http://dx.doi.org/10.1017/S0960129505005074
http://dx.doi.org/10.1145/3236782
http://arxiv.org/abs/2204.04821
http://dx.doi.org/10.46298/lmcs-18(1:13)2022


The Magmoid of Normalized Stochastic Kernels

A Proofs for Section 1 (Introduction)

Definition A.1 (Extension). Given two monads, (𝑆, 𝜇𝑆 , 𝜂𝑆 ) and
(𝑇, 𝜇𝑇 , 𝜂𝑇 ), an 𝑆-extension of the 𝑇 -algebra (𝐴, 𝛼) is a 𝑇 -algebra
(𝑆𝐴, 𝛼#) such that 𝛼 # 𝜂𝑆

𝐴
=𝑇 (𝜂𝑆

𝐴
) # 𝛼#

.

𝑇𝐴 𝑇𝑆𝐴

𝐴 𝑆𝐴

𝑇𝜂𝑆

𝛼 𝛼#

𝜂𝑆

RemarkA.2. A convex algebra is an algebra for the finitely-supported
distribution monad (D). A one-point extension of a convex algebra

(𝐴, 𝛼), in the sense of Sokolova and Woracek [SW18] is precisely

anM-extension, an extension over the maybe monad.

Theorem A.3 (Black-hole is unique [SW18, Theorem 5.3]). The
black-hole one-point extension, defined by

𝛼# (𝑑) =
{
𝑑 if 𝑑 (⊥) = 0

⊥ if 𝑑 (⊥) > 0

is the only functorial one-point extension of convex algebras.

It is well-known that a distributive law𝜓 : 𝑇𝑆 → 𝑆𝑇 of a monad 𝑆

over another monad𝑇 gives a lifting of the monad 𝑆 to the category

of algebras of 𝑇 [Bec69]. The lifted monad acts on algebras by

extending them.

Proposition A.4 (Extensions from distributive laws). Any dis-
tributive law, 𝜓 : 𝑇𝑆 → 𝑆𝑇 , determines a functorial 𝑆-extension of
𝑇 -algebras.

Proof. Given a distributive law,𝜓 : 𝑇𝑆 → 𝑆𝑇 and a 𝑇 -algebra

(𝐴, 𝛼), consider the morphism 𝛼# =𝜓𝐴 # 𝑆 (𝛼). The lifted monad, 𝑆 ,

following Beck’s work [Bec69], acts on objects (𝐴, 𝛼) by 𝑆 (𝐴, 𝛼) =
(𝑆 (𝐴), 𝛼#).

Let us check that (𝑆𝐴, 𝛼#) is an 𝑆-extension of (𝐴, 𝛼). We use (i)
Beck’s construction, (ii) 𝑆-unitality of the distributive law, and (iii)
naturality.

𝑇 (𝜂𝑆𝐴) # 𝛼#
(i)
= 𝑇 (𝜂𝑆𝐴) #𝜓𝐴 # 𝑆 (𝛼) (ii)

= 𝜂𝑆𝑇𝐴 # 𝑆 (𝛼) (iii)
= 𝛼 # 𝜂𝑆𝐴

This concludes the proof. □

Corollary 1.1 (from [SW18, Theorem 5.3]). Black-hole seman-
tics (Proposition 3.5) determines the only distributive law between the
distribution monad and the maybe monad, DM → MD.

Proof. We combine Sokolova and Woracek’s result (Proposi-

tion A.3) with the previous Proposition A.4. □

B Proofs for Section 2 (Normalization)

Definition B.1 (Finitary distribution monad). The finitary dis-
tribution monad, D : Set → Set, assigns, to each set, the set of

finitely-supported distributions on it,

D(𝑋 ) =
{
𝑑 : 𝑋 → [0, 1]

����� #|supp(𝑑) | < ∞,
∑︁
𝑥∈𝑋

𝑑 (𝑥) = 1

}
.

Definition B.2 (Maybe monad). The maybe monad (sometimes

called the option monad), M : Set → Set, assigns to each set 𝑋 , the

same set with an extra disjoint element usually denoted by⊥ ∈ M𝑋 .

That is, M𝑋 = 𝑋 + {⊥}.

Definition B.3 (Monoidal natural transformation). A monoidal
natural transformation between two lax monoidal functors,

(𝐹,𝑢𝐹 , 𝑣𝐹 ) : (A, ⊗𝑎, 𝐼𝑎) → (B, ⊗𝑏 , 𝐼𝑏 ) 𝑎𝑛𝑑

(𝐺,𝑢𝐺 , 𝑣𝐺 ) : (A, ⊗𝑎, 𝐼𝑎) → (B, ⊗𝑏 , 𝐼𝑏 ),
is a natural transformation between the underlying functors,𝛼𝑋 : 𝐹𝑋 →
𝐺𝑋 , additionally making the following diagrams commute.

𝐹𝑋 ⊗𝑏 𝐹𝑌 𝐹 (𝑋 ⊗𝑎 𝑌 )

𝐺𝑋 ⊗𝑏 𝐺𝑌 𝐺 (𝑋 ⊗𝑎 𝑌 )

𝑢𝐹

𝛼𝑋 ⊗𝑏𝛼𝑌 𝛼𝑋⊗𝑎𝑌

𝑢𝐺

𝐼𝑏 𝐺𝐼𝑎

𝐹𝐼𝑎

𝑣𝐹

𝑣𝐺

𝛼𝐼

Proposition 2.5 (Non-associative category of normalized ker-

nels). Normalized kernels between sets, 𝑋 → MD𝑌 , form a non-
associative category, Norm, where composition of two morphisms,
𝑓 : 𝑋 → MD𝑌 and 𝑔 : 𝑌 → MD𝑍 , is defined by

(𝑓 # 𝑔) (𝑥 ; 𝑧) =
[ ∑

𝑣∈𝑌 𝑓 (𝑥 ; 𝑣) · 𝑔(𝑣 ; 𝑧)∑
𝑣∈𝑌

∑
𝑤∈𝑍 𝑓 (𝑥 ; 𝑣) · 𝑔(𝑣 ;𝑤)

]
.

In other words, if we consider the associated substochastic kernels,
𝑓 • : 𝑋 → DM𝑌 and 𝑔• : 𝑌 → DM𝑍 , it is the normalization of their
composition as subdistributions, 𝑓 # 𝑔 = n(𝑓 • ;;; 𝑔•).

Proof. We define id(𝑥 ;𝑥 ′) = [𝑥 = 𝑥 ′]. Let us check that it is

right unital. Let 𝑓 : 𝑋 → MD𝑌 be a normalized kernel.

(𝑓 # id) (𝑥 ;𝑦) =
[ ∑

𝑦′ 𝑓 (𝑥 ;𝑦′) · [𝑦′ = 𝑦]∑
𝑦′,𝑦 𝑓 (𝑥 ;𝑦′) · [𝑦′ = 𝑦]

]
=

[
𝑓 (𝑥 ;𝑦)∑
𝑦 𝑓 (𝑥 ;𝑦)

]
= 𝑓 (𝑥 ;𝑦) .

On the last step, either

∑
𝑦′ 𝑓 (𝑥 ;𝑦′) = 0, which implies 𝑓 (𝑥 ;𝑦) = 0,

or

∑
𝑦′ 𝑓 (𝑥 ;𝑦′) = 1, which simplifies the division. Left unitality is

analogous. □

Proposition 2.6. Normalized kernels are not associative.

Proof. Let us provide a specific counterexample. Consider a

coin flip, 𝑓 = 1/2 |𝑎⟩ + 1/2 |𝑏⟩, followed by a channel marking

it with different failure probabilities 𝑔(𝑎) = 1/3 |𝑥⟩ + 2/3 |𝑧⟩ and
𝑔(𝑏) = 1/2 |𝑦⟩ + 1/2 |𝑧⟩, and then followed by a channel that fails,

ℎ(𝑥) = |𝑥⟩ and ℎ(𝑦) = |𝑦⟩, but ℎ(𝑧) = 0.

In this case, let us check that (𝑓 # 𝑔) # ℎ ≠ 𝑓 # (𝑔 # ℎ). We have

the following computation for the left-hand side,

𝑓
{ 1/2 |𝑎⟩ + 1/2 |𝑏⟩
𝑔
{ 1/6 |𝑥⟩ +���2/6 |𝑧⟩ + 1/4 |𝑦⟩ +���1/4 |𝑧⟩
ℎ
{ 2/5 |𝑥⟩ + 3/5 |𝑦⟩ ,

while the right-hand side composition amounts to (𝑔 #ℎ) (𝑎) = 1 |𝑥⟩
and (𝑔 # ℎ) (𝑏) = 1 |𝑦⟩, and thus the result is 1/2 |𝑥⟩ + 1/2 |𝑦⟩.

𝑓
{ 1/2 |𝑎⟩ + 1/2 |𝑏⟩ ,
𝑔
{ 1/2 |1/3 |𝑥⟩ +���2/3 |𝑧⟩⟩ + 1/2 |1/2 |𝑦⟩ +���1/2 |𝑧⟩⟩ ,
ℎ
{ 1/2 |𝑥⟩ + 1/2 |𝑥⟩ .

This contradicts associativity. □

Proposition 2.9. Normalized kernels form a symmetric monoidal
non-associative category with the cartesian product, where the tensor
of 𝑓1 : 𝑋1 → 𝑌1 and 𝑓2 : 𝑋2 → 𝑌2 is given by

(𝑓1 ⊗ 𝑓2) (𝑥1, 𝑥2;𝑦1, 𝑦2) = 𝑓1 (𝑥1;𝑦1) · 𝑓2 (𝑥2;𝑦2) .



Elena Di Lavore, Mario Román, and Márk Széles

Proof. Most of the structure is direct. The interchange law

corresponds to the following equation,[ ∑
𝑦1,𝑦2

𝑓1 (𝑥1;𝑦1) · 𝑓2 (𝑥2;𝑦2) · 𝑔1 (𝑦1; 𝑧1) · 𝑔2 (𝑦2; 𝑧2)∑
𝑦1,𝑦2,𝑧1,𝑧2

𝑓1 (𝑥1;𝑦1) · 𝑓2 (𝑥2;𝑦2) · 𝑔1 (𝑦1; 𝑧1) · 𝑔2 (𝑦2; 𝑧2)

]
=[ ∑

𝑦1
𝑓1 (𝑥1;𝑦1) ·𝑔1 (𝑦1; 𝑧1)∑

𝑦1,𝑧1
𝑓1 (𝑥1;𝑦1) ·𝑔1 (𝑦1; 𝑧1)

]
·
[ ∑

𝑦2
𝑓2 (𝑥2;𝑦2) ·𝑔2 (𝑦2; 𝑧2)∑

𝑦2,𝑧2
𝑓2 (𝑥2;𝑦2) ·𝑔2 (𝑥2; 𝑧2)

]
which uses distributivity of products over sums. □

C Proofs for Section 3 (Distributive Laws)

Definition C.1 (Distributive law [Bec69],
• •

• • ). A distributive law

between two monads, (𝑆, 𝜇, 𝜈) and (𝑇, 𝜇, 𝜈), on the same category

is a natural transformation𝜓𝑋 : 𝑇𝑆𝑋 → 𝑆𝑇𝑋 that moreover makes

the following diagrams commute.

=

=

;

;

=

=

𝑇 𝑇 𝑆 𝑇 𝑇 𝑆 𝑆𝑆 𝑆𝑆𝑇

𝑇 𝑇𝑆 𝑆

𝑇

𝑆 𝑆 𝑆 𝑆𝑇 𝑇 𝑇 𝑇

𝑇𝑇𝑇𝑇𝑆 𝑆 𝑆 𝑆

Definition C.2 (Monoidal monad). A monoidal monad, given by a

tuple (𝑇, 𝜇, 𝜂,𝑢, 𝑣), on a strict monoidal category (C, ⊗, 𝐼 ) consists
of a monad (𝑇, 𝜇, 𝜂), whose underlying functor is lax monoidal:

there exist structural natural transformations,

𝑢𝑋,𝑌 : 𝑇𝑋 ⊗ 𝑇𝑌 → 𝑇 (𝑋 ⊗ 𝑌 ) and 𝑣 : 𝐼 → 𝑇 𝐼,

satisfying associativity, (𝑢𝑋,𝑌 ⊗ id𝑍 ) #𝑢𝑋⊗𝑌,𝑍 = (id𝑋 ⊗𝑢𝑌,𝑍 ) #𝑢𝑋,𝑌⊗𝑍 ,
and unitality, (id𝑇𝑋 ⊗ 𝑣) # 𝑢 = id𝑇𝑋 and (𝑣 ⊗ id𝑇𝑋 ) # 𝑢 = id𝑇𝑋 .

𝑇𝑋 ⊗ 𝑇𝑌 ⊗ 𝑇𝑍 𝑇𝑋 ⊗ 𝑇 (𝑌 ⊗ 𝑍 )

𝑇 (𝑋 ⊗ 𝑌 ) ⊗ 𝑇𝑍 𝑇 (𝑋 ⊗ 𝑌 ⊗ 𝑍 )

𝑢𝑋,𝑌 ⊗id𝑇𝑍

id𝑇𝑋 ⊗𝑢𝑌,𝑍

𝑢𝑋,𝑌 ⊗𝑍
𝑢𝑋⊗𝑌,𝑍

𝑇𝑋 𝑇𝑋 ⊗ 𝑇 𝐼

𝑇 𝐼 ⊗ 𝑇𝑋 𝑇𝑋

id⊗𝑣

𝑣⊗id 𝑢𝑋,𝐼

𝑢𝐼 ,𝑋

Moreover, the unit and multiplication of the monad are monoi-

dal natural transformations, meaning that the following diagrams

commute.

𝑋 ⊗ 𝑌 𝑇 (𝑋 ⊗ 𝑌 )

𝑇𝑋 ⊗ 𝑇𝑌

𝜂𝑋⊗𝑌

𝜂𝑋 ⊗𝜂𝑌
𝑢𝑋,𝑌

𝐼 𝑇 𝐼

𝐼

id

𝜂𝐼

𝑣

𝐼 𝑇 𝐼

𝑇 𝐼 𝑇𝑇 𝐼

𝑣

𝑣

𝑇 𝑣

𝜇𝐼

𝑇𝑇𝑋 ⊗ 𝑇𝑇𝑌 𝑇𝑋 ⊗ 𝑇𝑌 𝑇 (𝑋 ⊗ 𝑌 )

𝑇 (𝑇𝑋 ⊗ 𝑇𝑌 ) 𝑇𝑇 (𝑋 ⊗ 𝑌 )

𝑢

𝜇⊗𝜇 𝑢

𝑇𝑢

𝜇

Definition C.3 (Monoidal distributive law). A monoidal distribu-

tive law between monoidal monads, (𝑆, 𝜇, 𝜂,𝑢, 𝑣) and (𝑇, 𝜇, 𝜂,𝑢, 𝑣),
is a distributive law, 𝜓𝑋 : 𝑇𝑆𝑋 → 𝑆𝑇𝑋 , whose transformation is

monoidal

𝑇𝑆𝑋 ⊗ 𝑇𝑆𝑌 𝑇 (𝑆𝑋 ⊗ 𝑆𝑌 ) 𝑇𝑆 (𝑋 ⊗ 𝑌 )

𝑆𝑇𝑋 ⊗ 𝑆𝑇𝑌 𝑆 (𝑇𝑋 ⊗ 𝑇𝑌 ) 𝑆𝑇 (𝑋 ⊗ 𝑌 )

𝜓𝑋 ⊗𝜓𝑌

𝑢𝑆𝑋,𝑆𝑌 𝑇𝑢𝑋,𝑌

𝜓𝑋⊗𝑌
𝑢𝑆 𝑆𝑢𝑋,𝑌

𝐼 𝑆𝐼 𝑆𝑇 𝐼

𝑇 𝐼 𝑆𝑇 𝐼

𝑣

𝑣 𝑆𝑣

𝑇 𝑣
𝜓𝐼

D Proofs for Section 4 (Sesquilaws)

Proposition 4.3. Almost-distributive laws,𝜓𝑋 : 𝑇𝑆𝑋 → 𝑆𝑇𝑋 , in-
duce non-associative monads on their composite functors, 𝑆𝑇 . Monoi-
dal almost distributive laws induce monoidal non-associative monads
on their composite functors.

Proof. The unit of the composite non-associative monad is

𝜂 = 𝜂𝑆𝜂𝑇 ; the multiplication is 𝜇 = 𝑆𝜓𝑇 ;;; 𝜇𝑆𝜇𝑇 . From unitality of

the almost distributive law, unitality of the non-associative monad

follows.

Whenever the almost distributive law is moreover monoidal,

the unit and multiplication of the monad become monoidal by

construction. □

Proposition 4.4 (Kleisli magmoids). Any non-associative monad,
(𝑅, 𝜇𝑅, 𝜂𝑅) over a category C, induces a magmoid, (C,K(𝑅)). Any
monoidal non-associative monad induces a monoidal magmoid.

Proof. Let us first construct a non-associative category, K(𝑅):
the construction is similar to that of the Kleisli category; the only

difference is that associativity is never used. Its objects are those

of C, the base category; its morphisms from 𝑋 to 𝑌 correspond to

morphisms 𝑋 → 𝑅𝑌 of the base category.

Composition of two morphisms, 𝑓 : 𝑋 → 𝑅𝑌 and 𝑔 : 𝑌 → 𝑅𝑍 ,

uses the multiplication 𝜇𝑋 : 𝑅𝑅𝑋 → 𝑅𝑋 . It is defined, in terms of

the base category, by 𝑓 # 𝑔 = 𝑓 ;;; 𝑅𝑔 ;;; 𝜇𝑍 . Identities are defined, in

terms of the base category, by 𝜂𝑅 . From the unitality axioms of the

almost distributive law, it follows that composition is unital with

identities.

Let us know construct the identity-on-objects functor (−)↑ : C →
K(𝑅). It acts as (𝑓 )↑ = 𝑓 # 𝜂𝑅 , and it is again direct to check first

that it defines a functor, and then, by cases, that the image of this

functor is associative. □

Proposition 4.5. Normalization, n𝑋 : DM𝑋 → MD𝑋 , forms an
almost-distributive law.

Proof. Let us check the axioms of an almost-distributive law.

The proof is parallel to that of the discrete case.

DMM𝑋 DM𝑋 MD𝑋

MDM𝑋 MMD𝑋

𝜓M

D𝜇M 𝜓

M𝜓
𝜇MD



The Magmoid of Normalized Stochastic Kernels

D𝑋 MD𝑋

DM𝑋

D𝜂M

𝜂MD

𝜓

M𝑋 MD𝑋

DM𝑋

𝜂DM

M𝜂D

𝜓

For M-multiplicativity, we start by noticing that an element

𝑑 ∈ DMM𝑋 means a distribution over𝑋 +{⊥}+{⊥′}. Let us reason
by cases. If 𝑑 (⊥) + 𝑑 (⊥′) = 1, then n(𝜇M (𝑑)) = ⊥ = 𝜇M (n(n(𝑑))),
either because 𝑑 (⊥′) = 1, or because 𝑑 (⊥′) ≠ 1 but then 𝑑 (⊥) > 0

and n(𝑑) (⊥) = 1. Assume, thus, that 𝑑 (⊥) + 𝑑 (⊥′) ≠ 1. We then

need to prove that normalizing both separately is the same as

normalizing after identifying both.

𝜇M (n(n(𝑑))) (𝑥) =
[

n(𝑑) (𝑥)∑
𝑥1∈𝑋 n(𝑑) (𝑥1)

]
=


[

𝑑 (𝑥 )∑
𝑥
2
∈𝑋+{⊥} 𝑑 (𝑥2 )

]
∑

𝑥1∈𝑋

[
𝑑 (𝑥1 )∑

𝑥
3
∈𝑋+{⊥} 𝑑 (𝑥3 )

] 
=

[
𝑑 (𝑥)∑

𝑥1∈𝑋 𝑑 (𝑥1)

]
= n(𝜇M (𝑑)) .

For M-unitality, we must check that the normalization of a nor-

malized distribution is itself: by 𝜂M (𝑑) (𝑥) = 𝑑 (𝑥), we conclude that∑
𝑥∈𝑋 𝜂M (𝑑) (𝑥) =∑

𝑥∈𝑋 𝑑 (𝑥) = 1, and thus n(𝜂M (𝑑)) = 𝜂M (𝑑).
For D-unitality, we reason by cases on M𝑋 . We directly check

that n(𝜂D (⊥)) = n( |⊥⟩) = ⊥ and n(𝜂D (𝑥)) = n( |𝑥⟩) = 𝑥 . □

Definition D.1 (Sesquilaw,
• •

• • ). A sesquilaw, (𝑆,𝑇 , , ), between
two monads, consists of a distributive law ( ) : 𝑆𝑇 → 𝑇𝑆 and an al-

most distributive law ( ) : 𝑇𝑆 → 𝑆𝑇 , forming a section-retraction

pair, ( ) # ( ) = id, and satisfying any of the following two equiv-

alent equations.

𝑆𝑇 𝑇

=

𝑇 𝑆 𝑇

𝑇𝑆
𝑆 𝑇

;= ;

𝑇𝑆𝑇
𝑇 𝑆 𝑇

𝑇
𝑇

𝑆
𝑆

A sesquilaw is monoidal whenever its transformation is.

Theorem 4.7. Normalization and subdistributions form a sesquilaw.

Proof. We already know that normalization and the inclusion

into subdistributions are mutual inverses, and that normalization

forms an almost distributive law (Proposition 4.5).

Let us prove that the second formulation of the axiom of dis-

tributive sesquilaws holds.

DMD𝑋 MDD𝑋 MD𝑋

DDM𝑋 DM𝑋

D𝑚

𝑛D M𝜇

𝜇M
𝑛

Let 𝑑 ∈ DMD𝑋 be, equivalently, a subdistribution of distribu-

tions. We must prove that normalizing and flattening the distribu-

tions is the same as, while regarding the distributions as subdistri-

butions, flattening and then normalizing. In other words, we seek

to prove

M𝜇 (n(𝑑)) = n(𝜇D (𝑑 (−•))) .

On the left hand side, we use the monad multiplication and norma-

lization.

M𝜇 (n(𝑑)) (𝑥) =
∑︁

𝛼∈D𝑋
n(𝑑) (𝛼) · 𝛼 (𝑥)

=
∑︁

𝛼∈D𝑋

[
𝑑 (𝛼)∑

𝛽∈D𝑋 𝑑 (𝛽)

]
· 𝛼 (𝑥) .

On the right hand side, we use the normalization and monad multi-

plication.

n(𝜇 (𝑑 (−•))) (𝑥) =
[

𝜇 (𝑑 (−•)) (𝑥)∑
𝑦∈𝑋 𝜇 (𝑑 (−•)) (𝑦)

]
=

[ ∑
𝛼∈D𝑋 𝑑 (𝛼•) · 𝛼 (𝑥)∑

𝑦∈𝑋
∑

𝛼∈D𝑋 𝑑 (𝛼•) · 𝛼 (𝑦)

]
=

[ ∑
𝛼∈D𝑋 𝑑 (𝛼•) · 𝛼 (𝑥)∑

𝛼∈D𝑋 𝑑 (𝛼•) ·∑𝑦∈𝑋 𝛼 (𝑦)

]
=

[∑
𝛼∈D𝑋 𝑑 (•𝛼) · 𝛼 (𝑥)∑

𝛼∈D𝑋 𝑑 (𝛼•)

]
.

The last step uses that all 𝛼 ∈ D𝑋 are full distributions:

∑
𝑦∈𝑋 𝛼 (𝑦)

must be exactly 1. This concludes the proof. □

Theorem 4.8 (Renormalization). Any sesquilaw, (𝑆,𝑇 ,𝑚, 𝑛), in-
duces an idempotent, 𝑘 = (𝑛 # 𝑚) : 𝑇𝑆 → 𝑇𝑆 . This idempotent is
left-absorptive, meaning the following diagram commutes.

𝑇𝑆𝑇𝑆𝑋 𝑇𝑆𝑋 𝑇𝑆𝑋

𝑇𝑆𝑇𝑆𝑋 𝑇𝑆𝑋

𝑘𝑇𝑆

𝜇𝑇𝑆
𝑘

𝜇𝑇𝑆 𝑘

Proof. We employ string diagrams for this proof. We need to

prove that any sesquilaw, ( , , 𝑆,𝑇 ), induces an idempotent, ( #
) : 𝑇𝑆 → 𝑇𝑆 , and that this idempotent is left-absorptive, meaning

that the following equation holds.

𝑇 𝑆

=

𝑇

𝑇 𝑇

𝑆

𝑆𝑆

𝑆𝑇

𝑇 𝑆

;

Let us prove a slightly stronger equation where we omit compo-

sition with the distributive law ( ). We use (i) the multiplicativity

axiom, (ii) the sesquilaw equation, (iii) that sesquilaws are inverses,
(iv) the sesquilaw equation, (v) the multiplicativity axiom. This

concludes the proof. □

Lemma 4.11. Any sesquilaw, (𝑆,𝑇 ,𝑚, 𝑛), induces a right action of
the monad 𝑇𝑆 into the non-associative monad 𝑆𝑇 : a natural trans-
formation, 𝑢𝑋 : 𝑆𝑇𝑇𝑆𝑋 → 𝑆𝑇𝑋, making the following two diagrams
commute.

𝑆𝑇𝑋 𝑆𝑇𝑇𝑆𝑋 𝑆𝑇𝑇𝑆𝑇𝑆𝑋 𝑆𝑇𝑇𝑆𝑋

𝑆𝑇𝑋 𝑆𝑇𝑇𝑆𝑋 𝑆𝑇𝑋

𝜂𝑇𝑆

id

𝑢

𝑆𝑇 𝜇𝑇𝑆

𝑢𝑇𝑆 𝑢

𝑢



Elena Di Lavore, Mario Román, and Márk Széles

(i)
=

(ii)
=

(iii)
=

(iv)
=

(v)
=

(vii)
=

(viii)
=

(vi)
=

Figure 2: Multiplicativity for the right action of a sesquilaw.

(i)
=

(ii)
=

(iii)
=

Figure 3: Unitality for the right action of a sesquilaw.

(𝑖 )
=

𝑇 𝑇 𝑆𝑆

𝑆 𝑇

(𝑖𝑖 )
=

(𝑖𝑖𝑖 )
=

(𝑖𝑣)
=

(𝑣)
=

;

𝑇 𝑆 𝑇 𝑆

𝑆 𝑇

Figure 1: Proof of the renormalization equation.

This action is defined by either side of the following commutative
diagram.

𝑆𝑇𝑇𝑆𝑋 𝑆𝑇𝑆𝑋 𝑇𝑆𝑆𝑋

𝑇𝑆𝑇𝑆𝑋 𝑇𝑇𝑆𝑆𝑋 𝑇𝑆𝑋 𝑆𝑇𝑋

𝑚𝑇𝑆

𝑆𝜇𝑇 𝑆 𝑚𝑆

𝑇 𝜇𝑆

𝑇𝑚𝑆 𝜇𝑇 𝜇𝑆 𝑛

Proof. Let us use string diagrams for this proof. We will show

that any sesquilaw, ( , , 𝑆,𝑇 ), induces an action of the monad𝑇𝑆

into the almost monad 𝑆𝑇 . We define the action, 𝑢 : 𝑆𝑇𝑇𝑆 → 𝑆𝑇 , by

string diagrams, as any of the two following equivalent definitions.

=𝑢 =

We reason by string diagrams (in Figure 2). We use (i) the multi-

plicativity axiom, (ii) that sesquilaws are inverses, (iii) the sesquilaw
equation, (iv) the multiplicativity axiom, (v) the multiplicativity of

the distributive law, (vi,viii) associativity of the monad, and (vii)
the multiplicativity of the distributive law.

The proof of unitality is more direct (Figure 3): it uses (i,ii) uni-
tality of both monads and (iii) that sesquilaws are inverses.

With these two axioms, we have built an action. In the monoidal

case, we repeat the exact same proof just considering that all natural

transformations are monoidal natural transformations. □

Theorem 4.12. In the setting of a sesquilaw, (𝑆,𝑇 ,𝑚, 𝑛), the Kleisli
category of the distributive law, K(𝑚), acts on the Kleisli magmoid
of the almost distributive law, K(𝑛).

Proof. We define the action, (⊳) : K(𝑛) (𝑋 ;𝑌 ) ×K(𝑚) (𝑌 ;𝑍 ) →
K(𝑛) (𝑋 ;𝑍 ), as 𝑝 ⊳ 𝑓 = 𝑝 ;;; 𝑆𝑇 𝑓 ;;;𝑢𝑍 , with the natural transformation

𝑢𝑋 : 𝑆𝑇𝑇𝑆𝑋 → 𝑆𝑇𝑋 defined as in Lemma 4.11. Multiplicativity and

unitality follow from Lemma 4.11. □

Corollary 4.13. Normalized kernels admit an action from sub-
stochastic kernels, defined by 𝑝 ⊳ 𝑓 = n(𝑝• ;;; 𝑓 ).

(⊳) : Norm(𝑋 ;𝑌 ) × subStoch(𝑌 ;𝑍 ) → Norm(𝑋 ;𝑍 ).
That is, satisfying 𝑝 ⊳ id = 𝑝 and 𝑝 ⊳ (𝑓 ;;; 𝑔) = 𝑝 ⊳ 𝑓 ⊳ 𝑔.

Proof. The result follows from Proposition 4.9.

𝑝 ⊳ (𝑓 ;;; 𝑔) = n(𝑝• ;;; 𝑓 ;;; 𝑔) = n(n(𝑝• ;;; 𝑓 ) ;;; 𝑔)
= n(𝑝• ;;; 𝑓 ) ⊳ 𝑔 = 𝑝 ⊳ 𝑓 ⊳ 𝑔.

By section-retraction, n(𝑝• ;;; 𝑖𝑑) = n(𝑝•) = 𝑝 . □

E Proofs for Section 5 (Possibilistic

normalization)

Proposition 5.3. Post-selection is a monoidal sesquilaw.

Proof. A better description of post-selection start by regarding

non-empty subsets, the elements of R𝑋 , as non-null predicates on𝑋 :

predicates that are true on at least one element. We take this point

of view for this proof, as we shall see it simplifies it considerably.
7

7
Alternatively, the reader familiar with tricocycloids may prefer to regard this as a

consequence of Theorem J.1: tricocycloid homomorphisms also induce sesquilaw

homomorphisms; and, in this case, the possibilistic tricocycloid is the terminal one.

We choose not to develop this theory here.



The Magmoid of Normalized Stochastic Kernels

Post-selection of a predicate, 𝛼 : 𝑋 → {0, 1} or 𝛼 ∈ RM𝑋 , is

defined by 𝛼 (𝑥) except when it is null,

p(𝛼) =
[

𝛼 (𝑥)∨
𝑥∈𝑋 𝛼 (𝑥)

]
.

From here on, we repeat proofs analogous to those of the prob-

abilistic case. For instance, let us check that post-selection is a

monoidal natural transformation. It suffices to note that the follow-

ing formula holds.[
𝛼 (𝑥)∨

𝑥∈𝑋 𝛼 (𝑥)

]
∧
[

𝛽 (𝑥)∨
𝑥∈𝑋 𝛽 (𝑥)

]
=

[
𝛼 (𝑥) ∧ 𝛽 (𝑥)∨

𝑥∈𝑋 𝛼 (𝑥) ∧∨
𝑥∈𝑋 𝛽 (𝑥)

]
.

Let us also check the sesquilaw axiom. It is well-known that

there exists a distributive law of the maybe monad over any other

Set-monad. Let𝜓 ∈ RMR𝑋 be, equivalently, a predicate on non-null

predicates. On the lower path, we use the monad multiplication

and normalization.

M𝜇 (p(𝜓 )) (𝑥) =
∨

𝛼∈R𝑋
p(𝜓 ) (𝛼) ∧ 𝛼 (𝑥)

=
∨

𝛼∈R𝑋

[
𝜓 (𝛼)∨

𝛽∈R𝑋 𝜓 (𝛽)

]
∧ 𝛼 (𝑥).

On the right hand side, we use the normalization and monad multi-

plication.

p(𝜇 (𝜓 (−•))) (𝑥) =
[

𝜇 (𝜓 (−•)) (𝑥)∨
𝑦∈𝑋 𝜇 (𝜓 (−•)) (𝑦)

]
=

[ ∨
𝛼∈D𝑋 𝜓 (𝛼•) ∧ 𝛼 (𝑥)∨

𝑦∈𝑋
∨

𝛼∈R𝑋 𝜓 (𝛼•) ∧ 𝛼 (𝑦)

]
=

[ ∨
𝛼∈D𝑋 𝜓 (𝛼•) ∧ 𝛼 (𝑥)∨

𝛼∈D𝑋 𝜓 (𝛼•) ∧∨
𝑦∈𝑋 𝜓 (𝑦)

]
=

[∨
𝛼∈D𝑋 𝜓 (𝛼•) ∧ 𝛼 (𝑥)∨

𝛼∈D𝑋 𝜓 (𝛼•)

]
.

The last step uses that all𝛼 ∈ R𝑋 are non-null predicates:

∨
𝑦∈𝑋 𝛼 (𝑦)

must be exactly 1. The rest of the proof is analogous. □

Proposition 5.6. Support, supp𝑋 : D𝑋 → R𝑋 , is a sesquilaw ho-
momorphism between normalization and post-selection.

Proof. We must prove that the following two diagrams com-

mute.

MD𝑋 MR𝑋

DM𝑋 RM𝑋

•D

Msupp

•R
suppM

MD MR

DM RM

Msupp

suppM

◦D ◦R

The first diagram is direct. Let us discuss the second one. On the

left-hand side, we have

supp(n(𝑑)) (𝑥) = (n(𝑑) > 0)

=

( [
𝑑 (𝑥)∑
𝑥 ′ 𝑑 (𝑥 ′)

]
> 0

)
= (𝑑 (𝑥) > 0) .

Meanwhile, on the right-hand side, we get to the same result.

p(supp(𝑑)) (𝑥) =
[

supp(𝑑) (𝑥)∨
𝑥 ′∈𝑋 supp(𝑥 ′)

]
=

[
(𝑑 (𝑥) > 0)∨

𝑥 ′∈𝑋 (𝑑 (𝑥 ′) > 0)

]

= (𝑑 (𝑥 ′) > 0) .
This concludes the proof. □

F Proofs for Section 6 (Left and right

commutativivity)

Definition F.1 (Tensor schema, [JS91, Definition 1.4]). A tensor
schema D —also known as a polyquiver or polygraph—consists of

a set of objects, D𝑜𝑏 𝑗 , and, for each two lists of objects, 𝑋1, ..., 𝑋𝑛 ∈
D𝑜𝑏 𝑗 and 𝑌1, ..., 𝑌𝑚 ∈ D𝑜𝑏 𝑗 , a set of morphisms

D(𝑋1, ..., 𝑋𝑛 ;𝑌1, ..., 𝑌𝑚) .

Theorem F.2 (String diagrams, [JS91, Definition 1.2]). String dia-

grams over a tensor schema D—deformation classes of boxed pro-
gressive plane diagrams, in the original [JS91, Definition 1.2] — form
a strict monoidal category, String(D); moreover, this is the free strict
monoidal category over a tensor schema.

As a consequence, there is an adjunction between tensor schemas
and strict monoidal categories,

TensorSch(D, Forget(C)) � MonCat(String(D),C);
which, in turn, induces a monad, S = Forget # String, in the category
of tensor schemas.

Remark F.3. String diagrams form a monad on the category of

polyquivers, S : PolyQuiver → PolyQuiver, and its category of al-

gebras is precisely the category of strict monoidal categories and

strict functors [JS91, Theorem 2.3].

Theorem 6.7. Left commutative magmoids are non-multiplicative
algebras of the string diagrams monad over tensor schemas, in the
sense of Joyal and Street [JS91, Definition 1.4].

Moreover, these algebras satisfy the following equations for any
two diagrams 𝛼 and 𝛽 : we call them (i) left-bias, and (ii) monoidality.

𝛼
(𝑖𝑖 )
=

𝛽

(𝑖 )
=

𝛽

𝛼 𝛼

𝛽

𝛾

𝛼 𝛽

𝛾

Proof. We start by constructing, for each commutative mag-

moid, A, an algebra 𝜑 : S(A) → A. Given any string diagram,

𝑠 ∈ S(A), we may use that it is acyclic — progressive in the original

[JS91, §2]— to deduce the existence of a topological ordering of its

nodes, [𝑓1, ..., 𝑓𝑛].
Let us fix a representative string diagram, up to deformation,

where the nodes appear progressively in the given topological order

(this we obtain from Joyal and Street’s theorem, and contains the

core of the proof [JS91, §2]). For each node 𝑓𝑖 in the representative

string diagram, define 𝜙 (𝑓𝑖 ) = id ⊗ ... ⊗ 𝑓𝑖 ⊗ ... ⊗ id, to be the

given morphism tensored with as many identities as wires it has

on each side. Note that this is not well-defined under the choice of

topological ordering, we will need to show our final interpretation

of the whole diagram is.



Elena Di Lavore, Mario Román, and Márk Széles

Now, define the interpretation of the string diagram as the left-

associated composition of node interpretations,

𝜑 (𝑠) = (((𝜙 (𝑓1) # 𝜙 (𝑓2)) # 𝜙 (𝑓3)) # ...) # 𝜙 (𝑓𝑛).
We must show that this is well-defined under the choice of topo-

logical ordering. Any two topological orderings can be reached

from each other by swapping two independent adjacent nodes: 𝑓𝑖
and 𝑓𝑖+1 for some index 𝑖 . Let us call 𝑠 to the string diagram after

swapping these two nodes. We have that,

𝜑 (𝑠) = (((((𝜙 (𝑓1) # 𝜙 (𝑓2)) # ...) # 𝜙 (𝑓𝑖 )) # 𝜙 (𝑓𝑗 ))...) # 𝜙 (𝑓𝑛);
𝜑 (𝑠) = (((((𝜙 (𝑓1) # 𝜙 (𝑓2)) # ...) # 𝜙 (𝑓𝑗 )) # 𝜙 (𝑓𝑖 )) ...) # 𝜙 (𝑓𝑛).

Here, however, we may use the axiom of commutative magmoids to

prove that both terms are indeed equal. Explicitly, if two nodes— 𝑖

and 𝑗 —were independent in the original graph, then 𝜙 (𝑓𝑖 ) and
𝜙 (𝑓𝑗 ) interchange by the axioms of monoidal magmoids.

We may now check that the algebra is unital: if 𝑠𝑓 is a string

diagram consisting of a single node 𝑓 , we have that 𝜑 (𝑠𝑓 ) = 𝑓 , by

definition.

Finally, let us prove the three equations of the statement. Let

𝛼, 𝛽,𝛾 ∈ S(D) be three string diagrams. Let [𝑓1, ..., 𝑓𝑛] and [𝑔1, ..., 𝑔𝑚]
be two orderings of the nodes of 𝛼 and 𝛽 . We have

(1) 𝜑 ( [𝜑 (𝛼)]) = 𝜑 (𝛼), by unitality;

(2) 𝜑 ( [𝜑 (𝛼)]⊗[𝜑 (𝛽)]) = (𝜑 (𝛼)⊗id)#(id⊗𝜑 (𝛽)) = 𝜑 (𝛼)⊗𝜑 (𝛽),
using that, because the nodes in 𝛼 and 𝛽 are independent,

we may pick a topological ordering that places all nodes in

𝛼 before all nodes in 𝛽 ; from that topological ordering, we

have by induction applying the interchange law,

(((𝜙 (𝑓1) # 𝜙 (𝑓2)) # 𝜙 (𝑓3)) # ...) # 𝜙 (𝑔𝑚) =
(((𝜙 (𝛼) # 𝜙 (𝑔1)) # 𝜙 (𝑔2)) # ...) # 𝜙 (𝑔𝑚) =
(((𝜙 (𝑔1) # 𝜙 (𝑔2)) # ...) # 𝜙 (𝑔𝑚)) # 𝜙 (𝛼) =

𝜙 (𝛽) # 𝜙 (𝛼) .
(3) 𝜑 ( [𝜑 (𝛼)] # 𝛽) = ((𝜑 (𝛼) # 𝑔1) # ...) # 𝑔𝑚 , using that, because

all nodes in 𝛼 appear before nodes in 𝛽 , a topological order-

ing can be constructed from the topological ordering in 𝛼

followed by the topological ordering in 𝛽 .

These close the proof. □

Remark F.4 (Non-multiplicative algebras of string diagrams). Mo-

noidal magmoids are not algebras for this string diagrams mo-

nad, but there are two canonical algebra structures on any mo-

noidal magmoid: right-associative and left-associative evaluation,

ev𝑅 : S(A) → A and ev𝐿 : S(A) → A. Both of these evaluations sat-

isfy the unitality axiom of algebras, but both fail the multiplicativity

axiom.

A S(A) S(S(A)) S(A)

A S(A) A

≠𝜇A

S(ev• )

ev•

ev•

As a result, a string diagram composed of string diagrams has a

different semantics from its flattening.

Remark F.5 (Normalization boxes). This explains the emergence

of normalization boxes [LT23, JSS25]. Considering elements of the

monad of string diagrams, S(A), is insufficient to modulate the

non-associativity of normalization. Instead, authors use boxes that

themselves contain diagrams with boxes; that is, elements of the

free monad

S∗ (A) = A + S(A) + S(S(A)) + . . . .

G Proofs for Section 7 (Markov magmoids)

Proposition G.1 (Normalization copy-discard sesquilaw). Norma-
lized kernels form a copy-discard magmoid. Normalization induces a
copy-discard sesquilaw.

Proposition 7.5. Any copy-discard sesquilaw induces a quasito-
tal magmoid. As a corollary, normalized kernels are quasitotal: and,
exemplifying Remark 6.8, the following equation holds for any nor-
malized kernel 𝑓 : 𝑋 → MD𝑌 .[ ∑

𝑦′ 𝑓 (𝑥 ;𝑦) · 𝑓 (𝑥 ;𝑦′)∑
𝑦,𝑦′ 𝑓 (𝑥 ;𝑦) · 𝑓 (𝑥 ;𝑦′)

]
= 𝑓 (𝑥 ;𝑦) .

Proof. More generally, let us prove that any morphism that

factors into a deterministic morphism followed by a total morphism

is quasitotal. Let 𝑓 : 𝑋 → 𝑍 be a morphism that factors as 𝑓 = 𝑎 # 𝑏
for a deterministic morphism 𝑎 : 𝑋 → 𝑌 and a total morphism

𝑏 : 𝑌 → 𝑍 .

We reason that the morphism is quasitotal using (i) the factoriza-
tion, (ii) that 𝑏 is total, (iii) that 𝑎 is deterministic, (iv) the comonoid

axioms, and (v) the factorization.

𝑎 𝑎

𝑏 𝑏

𝑎 𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑓 𝑓
(i)
=

(ii)
=

(iii)
=

(iv)
=

𝑓(v)
=

Finally, we are left to prove that, in the Kleisli category of a

copy-discard sesquilaw, (𝑇, 𝑆, 𝑛,𝑚), every morphism factors into

a deterministic morphism followed by a total morphism. Indeed,

morphisms of the Kleisli category are of the form 𝑓 : 𝑋 → 𝑆𝑇𝑌 ,

and they compose as 𝑓 #𝑔 = 𝑓 ;;;𝑆𝑇𝑔 ;;;𝑆𝑛𝑇 ;;; 𝜇𝑆𝜇𝑇 . Because the monad

𝑆 is relevant, any morphism of the form 𝑔 ;;; 𝑆𝜂𝑇 is deterministic;

because the monad 𝑇 is affine, any morphism of the form ℎ ;;; 𝜂𝑆 is

total. It suffices to note that 𝑓 = (𝑓 ;;; 𝑆𝜂𝑇 ) # 𝜂𝑆 by unitality of the

sesquilaw. □

Lemma G.2. Any copy-discard sesquilaw, (𝑆,𝑇 ,𝑚, 𝑛), induces a
quasitotal magmoid that satisfies associativity, 𝑓 # (𝑔 #ℎ) = (𝑓 #𝑔) #ℎ,
if either

(1) 𝑓 = 𝑢 ;;; 𝑆𝜂𝑇 for some 𝑢 : 𝑋 → 𝑆𝑌 ;
(2) 𝑔 = 𝑣 ;;; 𝑆𝜂𝑇 for some 𝑣 : 𝑌 → 𝑆𝑍 ; or
(3) ℎ =𝑤 ;;; 𝜂𝑆𝑇 for some𝑤 : 𝑍 → 𝑇𝑊 .

Proof. We employ string diagrams. The two sides of the as-

sociativity equation can be regarded as natural transformations,

𝑆𝑇𝑆𝑇𝑆𝑇 → 𝑆𝑇 ; we equate these.

Let us consider the first case. On the left hand side, we use (i)
unitality of the almost distributive law, and (ii) unitality of the



The Magmoid of Normalized Stochastic Kernels

monad 𝑇 . On the right hand side, we also use (iii) unitality of the

almost distributive law, and (iv) unitality of the monad 𝑇 . Both

sides coincide by associativity of the monad 𝑆 .

(i)
=

(ii)
=

(iii)
=

(iv)
=

Let us consider the second case. We use (i) unitality of the monad

𝑇 , (ii) associativity of themonad 𝑆 , (iii)multiplicativity of the almost

distributive law, and (iv) unitality of the almost distributive law.

(i)
=

(iv)
=

(ii)
=

(v)
=

(iii)
=

Let us consider the third case. We use (i) unitality of the almost

distributive law; (ii) unitality of the monad 𝑆 ; (iii) associativity
of the monad 𝑇 ; (iv) unitality of the monad 𝑇 ; (v) unitality of the

almost distributive law.

(i)
=

(iv)
=

(v)
=

(ii)
=

(iii)
=

We have thus shown associativity in any of the three cases. □

Lemma G.3. Normalized kernels form a left-relevant magmoid.

Proof. Our proof strategy is to apply Lemma G.2: we will prove

that, in the normalization magmoid, deterministic morphisms are

precisely those of the form 𝑢 # M𝜂D; while total morphisms are

precisely those of the form𝑤 # D𝜂M.
By definition, a total morphism must satisfy

∑
𝑦∈𝑌 𝑓 (𝑥 ;𝑦) = 1.

This means that there exists a stochastic kernel, 𝑢 (𝑥 ;𝑦) = 𝑓 (𝑥 ;𝑦),
such that 𝑓 = 𝑢 # M𝜂D.

By definition, a deterministic channel must satisfy 𝑓 (𝑥 ;𝑦) =

𝑓 (𝑥 ;𝑦) · 𝑓 (𝑥 ;𝑦), meaning that, either 𝑓 (𝑥 ;𝑦) = 0 or 𝑓 (𝑥 ;𝑦) = 1. In

particular, because probabilities must sum to less or equal than 1, for

each 𝑥 , there must exists at most a single 𝑦𝑥 such that 𝑓 (𝑥 ;𝑦𝑥 ) = 1.

This means there exists a partial function, defined by 𝑣 (𝑥) = 𝑦𝑥
whenever𝑦𝑥 exists and undefined otherwise, such that 𝑓 =𝑤 #D𝜂M.

Applying Lemma G.2, we conclude that normalized kernels form

a left-relevant magmoid. □

Theorem 7.9. Normalized kernels form a Markov magmoid.

Proof. We separately prove that normalized kernels form a

quasitotal magmoid (Proposition 7.5) and that it is a left-relevant

magmoid (LemmaG.3).We only need to show it admits conditionals.

By definition, a conditional must satisfy

𝑓 (𝑥 ;𝑦, 𝑧) =
[ ∑

𝑧1∈𝑍 𝑓 (𝑥 ;𝑦, 𝑧1) · 𝑐 (𝑥,𝑦; 𝑧)∑
𝑧1,𝑧∈𝑍 𝑓 (𝑥 ;𝑦, 𝑧1) · 𝑐 (𝑥,𝑦; 𝑧)

]
.

Let us define the following normalized kernel,

𝑐 (𝑥,𝑦, 𝑧) =
[

𝑓 (𝑥 ;𝑦, 𝑧)∑
𝑧∈𝑍 𝑓 (𝑥 ;𝑦, 𝑧)

]
,

and let us proceed by cases: for each 𝑥 and 𝑦, either∑︁
𝑧∈𝑍

𝑓 (𝑥 ;𝑦, 𝑧) = 0,

and then the axiom of conditionals vacously holds; or∑︁
𝑧∈𝑍

𝑓 (𝑥 ;𝑦, 𝑧) ≠ 0,

and we may simplify both coefficients to prove the axiom of condi-

tionals. We have proven that 𝑐 is a conditional of 𝑓 .

An alternative proof that we do not develop here starts by re-

alizing that the category of substochastic kernels has quasitotal

conditionals [DR23], and that, thanks to the sesquilaw, these are

inherited by the quasitotal magmoid of normalized kernels. □

H Proofs for Section 8 (Normalization in

standard Borel spaces)

Theorem 8.4. Normalization induces a monoidal sesquilaw.

Proof. Let us first prove that normalization is monoidal. Con-

sider twomeasures, 𝜈1 ∈ D𝑋 and 𝜈2 ∈ D𝑌 . We use (i) the definition
of normalization and the tensor of measures, (ii) the definition of

the indicator function, (iii) linearity of the Lebesgue integral, (iv)
linearity of the Lebesgue integral, and (v) the definition of the tensor
of measures.

N(𝜈1 ⊗ 𝜈2) (𝑈 )

(i)
=


∫
𝑦∈𝑌

(∫
𝑥∈𝑋 𝜉𝑈 (𝑥,𝑦) · 𝜈1 (d𝑥)

)
· 𝜈2 (d𝑦)∫

𝑦∈𝑌

(∫
𝑥∈𝑋 𝜉𝑋×𝑌 (𝑥,𝑦) · 𝜈1 (d𝑥)

)
· 𝜈2 (d𝑦)


(ii)
=


∫
𝑦∈𝑌

(∫
𝑥∈𝑋 𝜉𝑈 (𝑥,𝑦) · 𝜈1 (d𝑥)

)
· 𝜈2 (d𝑦)∫

𝑦∈𝑌

(∫
𝑥∈𝑋 1 · 𝜈1 (d𝑥)

)
· 𝜈2 (d𝑦)


(iii)
=


∫
𝑦∈𝑌

(∫
𝑥∈𝑋 𝜉𝑈 (𝑥,𝑦) · 𝜈1 (d𝑥)

)
· 𝜈2 (d𝑦)

𝜈1 (𝑋 ) · 𝜈2 (𝑌 )





Elena Di Lavore, Mario Román, and Márk Széles

(iv)
=

∫
𝑦∈𝑌

(∫
𝑥∈𝑋

𝜉𝑈 (𝑥,𝑦) ·
[
𝜈1 (d𝑥)
𝜈1 (𝑋 )

] )
·
[
𝜈2 (d𝑦)
𝜈2 (𝑌 )

]
(v)
= (N(𝜈1) ⊗ N(𝜈2)) (𝑈 ) .

Let us now prove that normalization determines an almost dis-

tributive law.

DMM𝑋 DM𝑋 MD𝑋

MDM𝑋 MMD𝑋

NM

D𝜇M N

MN
𝜇MD

D𝑋 MD𝑋

DM𝑋

D𝜂M

𝜂MD

N

M𝑋 MD𝑋

DM𝑋

𝜂DM

M𝜂D

N

For M-multiplicativity, note that an element 𝑑 ∈ DMM𝑋 is a

measure over𝑋+{⊥}+{⊥′}. Let us reason by cases. If𝑑 ({⊥,⊥′}) =
1, then N(𝜇M (𝑑)) = ⊥ = 𝜇M (N(N(𝑑))), either because 𝑑 (⊥′) = 1,

or because 𝑑 (⊥′) ≠ 1 but then 𝑑 (⊥) > 0 and N(𝑑) (⊥) = 1. Assume,

thus, that 𝑑 ({⊥,⊥′}) ≠ 1. We then need to prove that normalizing

both separately is the same as normalizing after identifying both.

𝜇M (N(N(𝑑))) (𝑈 ) =
[
N(𝑑) (𝑈 )
N(𝑑) (𝑋 )

]
=


[

𝑑 (𝑈 )
𝑑 (𝑋+{⊥})

][
𝑑 (𝑋 )

𝑑 (𝑋+{⊥})

] 
=

[
𝑑 (𝑈 )
𝑑 (𝑋 )

]
= n(𝜇M (𝑑)) .

For M-unitality, we must check that the normalization of a

normalized distribution is itself: by 𝜂M (𝑑) (𝑈 ) = 𝑑 (𝑈 ), we conclude
that 𝜂M (𝑑) (𝑋 ) = 𝑑 (𝑋 ) = 1, and thus N(𝜂M (𝑑)) = 𝜂M (𝑑). For D-

unitality, we reason by cases onM𝑋 . We check that N(𝜂D (⊥)) =
N( |⊥⟩) = ⊥ and that N(𝜂D (𝑥)) = N( |𝑥⟩) = 𝑥 .

Let us now prove that normalization and subdistributions form

a sesquilaw.

We first need to prove that normalization and the inclusion into

subdistributions are a section-retraction pair. Given any normalized

distribution, 𝜈 ∈ MD𝑋 , the measure of the whole set must either

be zero or one, 𝜈 (𝑋 ) = 1 or 𝜈 (𝑋 ) = 0. If it is zero, it follows that

the measure of any subset,𝑈 ⊆ 𝑋 , must also be zero, 𝜈 (𝑈 ) = 0; as

a consequence, in any of the two cases,

N(𝜈) (𝑈 ) =
[
𝜈 (𝑈 )
𝜈 (𝑋 )

]
= 𝜈 (𝑈 ) .

Let us prove that the second formulation of the axiom of dis-

tributive sesquilaws holds.

DMD𝑋 MDD𝑋 MD𝑋

DDM𝑋 DM𝑋

D𝑚

ND M𝜇

𝜇M
N

Let 𝜈 ∈ DMD𝑋 be a subdistribution of distributions. We must

prove that normalizing and flattening the distributions is the same

as, while regarding the distributions as subdistributions, flattening

and then normalizing. In other words, we seek to prove

M𝜇 (N(𝜈)) = N(𝜇 (𝜈 (−•))) .

On the left hand side, we use (i) the definition of monad multiplica-

tion for the Giry monad, and (ii) the definition of normalization.

M𝜇 (N(𝜈 (−•))) (𝑈 ) (i)
=

∫
𝛼∈D𝑋

𝛼 (𝑈 ) · N(𝜈 (−•)) (d𝛼)

(ii)
=

∫
𝛼∈D𝑋

𝛼 (𝑈 ) ·
[
𝜈 (d𝛼)
𝜈 (D𝑋 )

]
.

On the right hand side, we use (i) the definition of normalization, (ii)
the definition of monad multiplication for the Giry monad and, fi-

nally, (iii) that the 𝛼 ∈ D𝑋 elements are full distributions, meaning

that 𝛼 (𝑋 ) = 1.

N(𝜇 (𝜈)) (𝑈 ) (i)
=

[
𝜇 (𝜈) (𝑈 )
𝜇 (𝜈) (𝑋 )

]
(ii)
=

[ ∫
𝛼∈D𝑋

𝛼 (𝑈 ) · 𝜈 (d𝛼)∫
𝛼∈D𝑋

𝛼 (𝑋 ) · 𝜈 (d𝛼)

]
(iii)
=

[ ∫
𝛼∈D𝑋

𝛼 (𝑈 ) · 𝜈 (d𝛼)
𝜈 (D𝑋 )

]
Lastly, we may divide by cases: whether 𝜈 (D𝑋 ) = 0 or 𝜈 (D𝑋 ) ≠ 0,

we may use linearity of the integral to equate the two sides. □

Lemma H.1. BorelNorm is a left-relevant magmoid.

Proof. Our proof strategy is to apply Lemma G.2: we will prove

that, in BorelNorm, deterministic morphisms are precisely those

of the form 𝑢 # M𝜂D; while total morphisms are precisely those of

the form 𝑤 # D𝜂M. Let us highlight that this is not automatic nor

does it follow from the discrete case: indeed, if we were to allow

normalized kernels between arbitrary measurable spaces, Lemma

G.2 would not apply: deterministic maps would not coincide with

measurable maps [Fri20, Example 10.4].

Any normalized kernel between standard Borel spaces, 𝑓 : 𝑋 →
MD𝑌 , can be regarded as a stochastic kernel to the standard Borel

spaceM𝑌 . Any such deterministic kernel must satisfy, by definition,

that 𝑓 (𝑥 ; 𝑆)2 = 𝑓 (𝑥 ; 𝑆). Thus, it must create measures yielding

either 0 or 1; that is, taking values in the set {0, 1}. In standard Borel

spaces, {0, 1}-valued measures correspond to delta measures [Fri20,

Example 10.5, Example 10.4]. Finally, a delta measure overM𝑌 is

either a delta measure over 𝑌 or a zero measure. In other words,

deterministic kernels correspond to partial measurable functions.

Any total kernel between standard Borel spaces, 𝑓 : 𝑋 → MD𝑌 ,

must be such that 𝑓 (𝑥 ;𝑌 ) = 1; that is, it must yield a full measure.

This means that there exists a stochastic kernel, 𝑢 (𝑥 ; 𝑆) = 𝑓 (𝑢; 𝑆),
such that 𝑓 = 𝑢 # M𝜂D.

Applying Lemma G.2, we conclude that normalized kernels be-

tween standard Borel spaces form a left-relevant magmoid. □

Theorem 8.7. BorelNorm is a Markov magmoid.

Proof. We separately prove that normalized kernels between

standard Borel spaces form a quasitotal magmoid (Proposition 7.5

and Theorem 8.4), and that they form a left-relevant magmoid

(Lemma H.1). We only need to show that it admits conditionals.

We will use that BorelSubstoch has quasitotal conditionals. This

is not a direct result, but has already been shown in the context of

partial Markov categories [DR23, Theorem 3.12].

Thanks to the sesquilaw, we know that there exists a faithful

functor (−)• : BorelNorm → BorelSubstoch. Quasitotal maps in

BorelSubstochmust satisfy 𝑓 (𝑥 ;𝑌 )2 = 𝑓 (𝑥 ;𝑌 ), and thus they must



The Magmoid of Normalized Stochastic Kernels

𝑥?

𝑝

𝑓

𝑔

ℎ

𝑥?

𝑓

𝑔

ℎ𝑥?

𝑓

𝑔

ℎ𝑥?

𝑔

ℎ𝑥?

𝑔

ℎ𝑥?

(i)
=

(ii)
=

(iii)
=

(iv)
=

(v)
=

𝑓

Figure 5: Back-door formula, second part of the proof.

yield normalized measures: in other words, they must be of the

form 𝑓 = 𝑢• for some normalized channel 𝑢.

Finally, because BorelSubstoch admits quasitotal conditionals,

𝑓 • must have a conditional 𝑐 that, being quasitotal, must be of the

form 𝑐 = 𝑣•. Then, by faithfulness, we conclude that 𝑣 must be a

conditional of 𝑓 . □

I Proofs for Section 9 (Discrete Markov

magmoids)

Proposition 9.6 (Back-door adjustment formula). In a discrete
Markov magmoid, let a joint state, 𝑝 : 1 → 𝑈 ⊗ 𝑋 ⊗ 𝑌 , admit the
following factorization into total morphisms where, moreover, 𝑓 has
full support.

𝑝

𝑓

𝑔

ℎ

=

Then, the following equation holds.

𝑓

ℎ

𝑔

𝑥?

=

𝑝

𝑥?

𝑝

Proof. Let us first simplify the uppermost part of the diagram

(Figure 4). We use (i) the factorization assumption, (ii) the left-bias
axiom of string diagrams for commutative magmoids, together

with associativity of the comultiplication, and (iii) the assumption

that the morphisms 𝑔 and ℎ are total, together with the comonoid

axioms.

𝑝

𝑓

𝑔

ℎ

(i)
=

(ii)
=

𝑓
(iii)
=

𝑓

𝑔

ℎ

Figure 4: Back-door formula, first part of the proof.

Let us simplify the second part of the diagram (Figure 5). We

now use (i) the factorization assumption, (ii) the left-bias axiom
of string diagrams for commutative magmoids, (iii) the Frobenius
equation, (iv) the left-bias axiom of string diagrams for commutative

magmoids, and (v) the assumption that 𝑓 has full support.

Let us conclude the proof (Figure 6). We (i) substitute both simpli-

fications on the original statement, (ii) we apply the left-bias axiom
of string diagrams for commutative magmoids, (iii) we use that we
are in a left-relevant magmoid, and (iv) we apply the monoidality

axiom of string diagrams for commutative magmoids. □

𝑝

𝑥?

𝑝

𝑓

(i)
= 𝑔

ℎ𝑥?

𝑓

(ii)
=

𝑔

ℎ

𝑥?

𝑓

(iii)
=

𝑔

ℎ

𝑥?

(iv)
=

𝑓

𝑔

ℎ

𝑥?

Figure 6: Back-door formula, final part of the proof.

Proposition 9.8 (Front-door adjustment formula). In a discrete
Markov magmoid, let a joint state, 𝑝 : 1 → 𝑋 ⊗ 𝑍 ⊗ 𝑌 , admit the
following factorization into total morphisms where, moreover, both 𝑡
and (𝑔 # 𝑠) below have full support.

𝑝

𝑔

𝑠

𝑡

𝑐

=



Elena Di Lavore, Mario Román, and Márk Széles

𝑝

𝑥?

𝑔

𝑠

𝑡

𝑐

(i)
=

(ii)
=

𝑥?

𝑔

𝑠

𝑡

(iii)
=

𝑥? 𝑡

𝑥

Figure 9: Front-door formula, third part of the proof.

𝑝
𝑝

𝑥?

𝑝

𝑔

𝑠

𝑡

𝑐

𝑥

𝑡

𝑔

𝑠

𝑔

𝑠
†
𝑔

𝑡

𝑐

𝑥

𝑡

𝑔

𝑠

𝑠

𝑔

𝑐

𝑡 𝑠

𝑠

𝑔𝑥

𝑠
†
𝑔𝑡

𝑔

𝑐

𝑡 𝑠

𝑠

𝑔𝑥

𝑠
†
𝑔𝑡

𝑐

𝑡 𝑠

𝑔𝑥

𝑠
†
𝑔𝑡

𝑐

𝑡 𝑠

𝑔𝑥

𝑠
†
𝑔𝑡

𝑐

𝑡 𝑠

𝑔𝑥

𝑠
†
𝑔𝑡

𝑐

𝑡 𝑠

𝑔𝑥

𝑠
†
𝑔

(i)
=

(ii)
=

(iii)
=

(vi)
=

(v)
=

(viii)
=

(vii)
=

(iv)
=

(ix)
=

𝑐

𝑡 𝑠

𝑔𝑥

𝑠
†
𝑔

(x)
=

𝑐

𝑡

𝑔

𝑥

Figure 10: Proof of the synthetic front-door criterion.

Then, the following equation holds.

𝑔

𝑠

𝑡

𝑐

𝑥? =

𝑝𝑝

𝑥?

𝑝

In other words, an intervention on the variable 𝑋 can be rewritten as
a composition, in the Markov magmoid, of the observational data.

Proof. Let us start by simplifying the left-hand side (Figure 7).

We use (i) simplification of an exact observation and full support

of 𝑠 , and (ii) the comonoid axioms.

𝑔

𝑠

𝑡

𝑐

𝑥? (i)
=

𝑔

𝑡

𝑐

𝑥
(ii)
=

𝑔𝑡

𝑐

𝑥

Figure 7: Front-door formula, first part of the proof.

Let us now simplify each one of the two factors. The first factor

simply evaluates part of the distribution (Figure 8). We use (i) the
axiom of left-relevant magmoids, after substitution, and (ii) the
comonoid axioms.

𝑝
(i)
=

𝑔

𝑠

𝑡

𝑐

(ii)
=

𝑔

𝑠

Figure 8: Front-door formula, second part of the proof.

The second factor computes the marginal of a conditional distri-

bution (Figure 9). We use (i) the left-bias axiom of string diagrams

for commutative magmoids, after substitution; (ii) totality of 𝑐 and

the comonoid axioms; and (iii) the simplification of an exact obser-

vation together with the full support assumption of (𝑔 # 𝑠).
Finally, let us address the main claim (Figure 10). We use (i,iv,vii)

the left-bias axiom of string diagrams for commutative magmoids,

after substitution; (ii) the existence of Bayesian inversions, from

conditionals (see any text on Markov categories, e.g. [FR20]), to-

gether with the left-bias axiom of string diagrams for commutative

magmoids; (iii) the Frobenius equation; (iv) the left-bias axiom of

string diagrams for commutative magmoids; (v) the full support
assumption of (𝑔 # 𝑠); (vi) the Frobenius equation, together with as-

sociativity of the comultiplication; (viii) the full support assumption

on 𝑡 ; (ix) the axiom of left-relevant magmoids; and (x) the definition
of Bayesian inversions. □



The Magmoid of Normalized Stochastic Kernels

J Proofs for Section 10 (Conclusions)

Theorem J.1 (Tricocycloid to sesquilaw). Every Set-based tricocy-
cloid induces a Set-based sesquilaw.

Proof sketch. Let us first recall that every tricocycloid, 𝐻 ,

induces a linear exponential monad 𝑇 , satisfying 𝑇 (𝑋 + 𝑌 ) �
𝑇𝑋 + 𝐻 ×𝑇𝑋 ×𝑇𝑌 +𝑇𝑌 .

From this property, let us construct a distributive law and an

almost distributive law. The first is the distributive law over the

Maybe monad, described by inclusion

(−)• : 𝑇𝑋 + 1 → 𝑇𝑋 + 𝐻 ×𝑇𝑋 + 1;

and the second uses projections to extract an element of the monad

from the first and the second summand,

(−)◦ : 𝑇𝑋 + 𝐻 ×𝑇𝑋 + 1 → 𝑇𝑋 + 1.

Additionally, note that we could construct another distributive law

that sends the second summad to the failure element,

(−)∗ : 𝑇𝑋 + 𝐻 ×𝑇𝑋 + 1 → 𝑇𝑋 + 1;

this would yield a black-hole semantics.
It remains to show that these induce a sesquilaw. Let us write

𝑋 ⊗ 𝑌 = 𝑋 + 𝐻 × 𝑋 × 𝑌 + 𝑌 and let us check that the axiom for

sesquilaws holds.

𝑇𝑇𝑋 ⊗ 1 𝑇𝑇𝑋 + 1 𝑇𝑋 + 1

𝑇𝑇𝑋 ⊗ 𝑇 (𝐻 ×𝑇𝑋 ) ⊗ 1 𝑇𝑋 ⊗ 1

𝑖

◦ 𝜇+1

𝜇⊗1⊗1

◦

This diagram can be split by an arrow, 𝜇 ⊗ 1 : 𝑇𝑇𝑋 ⊗ 1 → 𝑇𝑋 ⊗ 1,

the upper quadrangle then commutes because of naturality; the left

triangle can be checked to commute by cases on the coproduct. □

K Complete Racket implementation

The Racket v9.0 code is also available as an anonymized repository

[DRS26].

distributions.rkt� �
1 #lang racket
2

3 ;; NORMALIZED DISTRIBUTIONS.
4 ;;
5 ;; This file implements normalized distributions and
6 ;; subdistributions using a standard encoding as
7 ;; lists of pairs element/probability.
8

9 (require racket/struct)
10 (require sesquilaw/left-do)
11

12

13 (define (pair x y) (list x y))
14

15 (define (validity xs)
16 (apply + (map second xs)))
17

18 (define/match (dist-map f xs)
19 [ (f '()) null ]
20 [ (f (cons (list x v) ys))
21 (cons (list (f x) v) (dist-map f ys)) ])
22

23 (define/match (dist-map-values f xs)
24 [ (f '()) null ]
25 [ (f (cons (list x v) ys))
26 (cons (list x (f v)) (dist-map-values f ys)) ])
27
28 (define/match (remove-zeroes xs)

29 [ ('()) null ]
30 [ ((cons (list x 0) ys)) (remove-zeroes ys) ]
31 [ ((cons (list x v) ys))
32 (cons (list x v) (remove-zeroes ys)) ])
33

34 (define/match (weight-of-point x xs)
35 [ (x '()) 0 ]
36 [ (x (cons (list x v) ys))
37 (+ v (weight-of-point x ys)) ]
38 [ (x (cons (list y v) ys))
39 (weight-of-point x ys) ])
40

41 (define/match (dist-remove x xs)
42 [ (x '()) '()]
43 [ (x (cons (list x v) xs)) (dist-remove x xs) ]
44 [ (x (cons (list y v) xs))
45 (cons (list y v) (dist-remove x xs)) ])
46

47 (define/match (reweight xs)
48 [('()) '()]
49 [ ((cons (list x v) ys))
50 (let ([w (+ v (weight-of-point x ys))])
51 (cons (list x w) (reweight (dist-remove x ys)))) ])
52

53 (define (condense xs) (reweight (remove-zeroes xs)))
54

55 (define/match (rescale xss)
56 [ ((list xs v))
57 (dist-map-values (lambda (x) (* v x)) xs) ])
58

59

60 ;; Monad combinators.
61

62 (define (dist-join xss)
63 (condense (apply append (map rescale xss))))
64

65 (define (dist-normalize xs)
66 (condense
67 (dist-map-values
68 (lambda (v) (/ v (validity xs))) xs)))
69

70 (define (dist-bind xs f)
71 (dist-join (dist-map f xs)))
72

73 (define (dist-return x)
74 (list (pair x #e1)))
75

76

77 ;; Basic distributions.
78

79 (define (dist-uniform ls)
80 (map (lambda (x) (pair x (/ #e1 (length ls)))) ls))
81

82 (define dist-void
83 (list))
84

85 (define-syntax distribution
86 (syntax-rules ()
87 [(_ [x v] p ...)
88 (cons (pair x v) (distribution p ...))]
89 [(_) (list)]))
90

91 (define-syntax uniform
92 (syntax-rules ()
93 [(_ x ...) (dist-uniform (list x ...))]))
94

95

96 (provide
97 dist-bind dist-return dist-uniform dist-void
98 dist-normalize distribution uniform pair)� �

norm.rkt� �
1 #lang racket
2

3 ;; NORM.
4 ;; An implementation of the normalization almost monad,



Elena Di Lavore, Mario Román, and Márk Széles

5 ;; inheriting the return from distributions and using a
6 ;; modified bind that renormalizes. We also implement
7 ;; an observe statement.
8

9 (require sesquilaw/left-do)
10 (require sesquilaw/distributions)
11

12

13 (define norm-return
14 dist-return)
15

16 (define (norm-bind xs f)
17 (dist-normalize (dist-bind xs f)))
18

19 (define Norm
20 (monad norm-return norm-bind))
21

22 (define (observe x y)
23 (if (equal? x y)
24 (uniform '())
25 (uniform)))
26

27

28 (provide Norm norm-return norm-bind observe)� �
right-do.rkt� �

1 #lang racket
2

3 ;; DO-NOTATION.
4 ;; This file implements do-notation for magmoids: both
5 ;; right-associating do-notation (the usual one in
6 ;; Haskell) and left-associating do-notation (which is
7 ;; novel in magmoids).
8

9

10 ;; ALMOST MONADS.
11 ;; The following is a common interface to monad-like
12 ;; structures that do not necessarily satisfy any of the
13 ;; monad axioms.
14

15 (struct monad (return bind))
16

17

18 ;; RIGHT DO-NOTATION.
19 ;; Given a monad m, do notation is implemented
20 ;; inductively by the following two rewriting rules.
21 (define-syntax rDo
22 (syntax-rules (<- return)
23

24 ;; (1) A statement (x <- f), followed by the rest of
25 ;; the program (p ...) is translated into a Kleisli
26 ;; extension, (𝜆 x. { p }) † (f).
27 [ (rDo m
28 x <- f
29 p ...)
30

31 (( monad-bind m) f
32 (match-lambda [x (rDo m p ...)])) ]
33

34 ;; (2) A return (return x) is translated to the unit
35 ;; of the monad, 𝜂(x).
36 [ (rDo m
37 return x)
38

39 (( monad-return m) x) ]))
40

41 (provide rDo (struct-out monad))� �
left-do.rkt� �

1 #lang racket
2

3 (require sesquilaw/right-do)
4

5 ;; LEFT DO-NOTATION.
6

7 ;; Let us now implement left do-notation in terms of
8 ;; right do-notation. It will be inductively implemented
9 ;; as a left-fold with an accumulator that contains the

10 ;; first part of the program. Let us first describe the
11 ;; more general accumulator version: the left-associating
12 ;; version is the particular case that leaves the
13 ;; accumulator empty.
14

15 (define-syntax accDo
16 (syntax-rules (<- return)
17

18 ;; (1) A statement (x <- f), followed by the rest of
19 ;; the program (p ...) is added to the accumulator
20 ;; (acc) and the variable is added to the accumulated
21 ;; variables (accVar).
22 [ (accDo m accVar acc
23 x <- f
24 p ...)
25

26 (accDo m (list x accVar) (rDo m
27 accVar <- acc
28 x <- f
29 return (list x accVar))
30 p ...) ]
31

32 ;; (2) A return statement (return x) is translated to
33 ;; a right do-notation block evaluating the
34 ;; accumulator.
35 [ (accDo m accVar acc
36 return x)
37

38 (rDo m
39 accVar <- acc
40 return x) ]))
41

42

43 ;; Finally, we declare that a left-associating do
44 ;; notation block is the same as an accumulating
45 ;; do-notation block with an empty accumulator.
46 (define-syntax lDo
47 (syntax-rules (<- return)
48

49 ;; (3) An arbitrary left-associating block is the
50 ;; same as an accumulator block with an empty
51 ;; accumulator.
52 [ (lDo m
53 p ...)
54

55 (accDo m '()
56 (rDo m
57 return '())
58 p ...) ]))
59

60

61 (provide rDo lDo (struct-out monad))� �
monty-hall.rkt� �

1 #lang racket
2

3 ;; MONTY HALL.
4 ;; This file implements the Monty Hall problem, a famous
5 ;; probability puzzle originally posed by Steve Selvin in
6 ;; a letter to American Statistician.
7 ;;
8 ;; Reference:
9 ;; Letters to the Editor. American Statistician.

10 ;; Steve Selvin, 1975.
11

12 (require sesquilaw/left-do)
13 (require sesquilaw/distributions)
14 (require sesquilaw/norm)
15

16

17 ;; DESCRIPTION.
18

19 ;; We are in a game show, and a prize (a car, in the



The Magmoid of Normalized Stochastic Kernels

20 ;; original is hidden behind one of three doors (left,
21 ;; middle, and right). We constestant picks a door (say,
22 ;; the middle one). For dramatic effect, the host opens
23 ;; one of the non-chosen doors (say, the left one). The
24 ;; host does so avoiding the door that does contain the
25 ;; car (for it would spoil the show) and otherwise
26 ;; randomly and uniformly. Finally, the host offers us to
27 ;; change doors and pick the other one that remains
28 ;; closed. Should we change doors?
29

30 ;; HOST.
31 ;; Let us first formalize the behaviour of the host: it
32 ;; picks randomly and uniformly among the doors that have
33 ;; not been chosen and that, moreover, do not contain the
34 ;; car.
35 (define (host car choice)
36 (match (cons car choice)
37 [(cons 'left 'left) (uniform 'middle 'right)]
38 [(cons 'left 'middle) (uniform 'right)]
39 [(cons 'left 'right) (uniform 'left)]
40 [(cons 'middle 'left) (uniform 'right)]
41 [(cons 'middle 'middle) (uniform 'left 'right)]
42 [(cons 'middle 'right) (uniform 'left)]
43 [(cons 'right 'left) (uniform 'middle)]
44 [(cons 'right 'middle) (uniform 'left)]
45 [(cons 'right 'right) (uniform 'left 'middle)]))
46

47 ;; FORMULATION.
48

49 ;; Let us formalize the Monty Hall problem using
50 ;; do-notation. We repeat the exact same formalization
51 ;; twice: once using right-associating do-notation and
52 ;; once using left-associating do-notation. The result
53 ;; will be different in both cases.
54 ;;
55 ;; The program lines mean that
56 ;; (1) the car is distributed uniformly;
57 ;; (2) the host (knowing our choice) opens a door;
58 ;; (3) we observe the host opened the left door.
59 ;;
60 ;; What is the probability distribution of the car?
61

62 (define l-monty-hall
63 (lDo Norm
64 car <- (uniform 'left 'middle 'right)
65 opened <- (host car 'middle)
66 '() <- (observe opened 'left)
67 return car))

68

69 (define r-monty-hall
70 (rDo Norm
71 car <- (uniform 'left 'middle 'right)
72 opened <- (host car 'middle)
73 '() <- (observe opened 'left)
74 return car))� �

smoking.rkt� �
1 #lang racket
2

3 (require sesquilaw/left-do)
4 (require sesquilaw/distributions)
5 (require sesquilaw/norm)
6

7

8 (define survey
9 (distribution

10 [(list 'smoker 'tar 'nocancer) 323/800]
11 [(list 'smoker 'tar 'cancer) 57/800]
12 [(list 'nonsmoker 'tar 'nocancer) 1/800]
13 [(list 'nonsmoker 'tar 'cancer) 19/800]
14 [(list 'smoker 'notar 'nocancer) 18/800]
15 [(list 'smoker 'notar 'cancer) 2/800]
16 [(list 'nonsmoker 'notar 'nocancer) 38/800]
17 [(list 'nonsmoker 'notar 'cancer) 342/800]))
18

19 (define (front-door data i)
20 (lDo Norm
21 z <- (lDo Norm
22 (list xp z yp) <- data
23 '() <- (observe i xp)
24 return z)
25 x <- (lDo Norm
26 (list x zp yp) <- data
27 return x)
28 y <- (lDo Norm
29 (list xp zp y) <- data
30 '() <- (observe x xp)
31 '() <- (observe z zp)
32 return y)
33 return y))
34

35 (front-door survey 'smoker)
36 (front-door survey 'nonsmoker)� �



Elena Di Lavore, Mario Román, and Márk Széles

Rights statement

For the purpose of Open Access the Author has applied a Creative
Commons Attribution-ShareAlike 4.0 International public copyright
license to any Author Accepted Manuscript version arising from this
submission.


	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contributions
	1.3 Synopsis

	2 Normalization
	2.1 Normalization
	2.2 Normalized kernels are not associative
	2.3 Normalized kernels are monoidal
	2.4 Magmoids

	3 Distributive Laws
	3.1 Example: substochastic kernels
	3.2 Example: partial stochastic kernels
	3.3 Counterexample: normalized kernels

	4 Sesquilaws
	4.1 Almost-distributive laws
	4.2 Sesquilaws

	5 Possibilistic normalization
	5.1 Support, a sesquilaw homomorphism
	5.2 Subaffine relations, partial affine relations

	6 Left and right commutativivity
	6.1 Commutative magmoids
	6.2 String diagrams for commutative magmoids

	7 Markov magmoids
	7.1 Copy-discard magmoids
	7.2 Quasitotal magmoids
	7.3 Markov magmoids

	8 Normalization in standard Borel spaces
	9 Discrete Markov magmoids
	9.1 Inference in Discrete Markov Magmoids
	9.2 Magmoidal programming

	10 Conclusions
	References
	A Proofs for Section 1 (Introduction)
	B Proofs for Section 2 (Normalization)
	C Proofs for Section 3 (Distributive Laws)
	D Proofs for Section 4 (Sesquilaws)
	E Proofs for Section 5 (Possibilistic normalization)
	F Proofs for Section 6 (Left and right commutativivity)
	G Proofs for Section 7 (Markov magmoids)
	H Proofs for Section 8 (Normalization in standard Borel spaces)
	I Proofs for Section 9 (Discrete Markov magmoids)
	J Proofs for Section 10 (Conclusions)
	K Complete Racket implementation

