The Magmoid of Normalized Stochastic Kernels

Elena Di Lavore Mario Roman Mark Széles
University of Oxford University of Oxford Radboud University Nijmegen
United Kingdom United Kingdom The Netherlands
Abstract yielding either nothing or a full distribution. May we compose

Normalization, D(X + 1) — D(X) + 1, is almost a distributive law;
but because one of the distributive law axioms only holds up-to-
idempotent, it yields a non-associative composition of normalized
kernels. We introduce the Markov magmoid of normalized stochas-
tic kernels: a normalized-by-construction semantics for probabilis-
tic inference, unifying exact Bayesian observations and interven-
tions as two parenthesizations of the same composite. Front-door
and back-door criteria follow from the axioms of Markov magmoids;
we implement these with non-associative monadic notation.

1 Introduction

Normalization is essential in probabilistic inference: Bayes’ law
needs normalization to rescale the posterior distribution,

posterior o likelihood - prior.

However, probabilistic programming semantics is not necessar-

ily normalized-by-construction: normalization mostly appears as

an external primitive, and updating usually employs subdistribu-

tions [ , ] or unnormalized distributions [ , ,
, ]. Let us provide an example.

Imagine solving the famous Monty Hall problem [ ]:in a
game show, you choose from three closed doors for a chance of
winning the prize behind one of them; however, after choosing, the
host opens one of the empty doors and — with two closed doors
standing — invites you to switch your guess. Should you switch?

Let us compute. We (i) consider a prior uniform probability that a
prize is behind any of three doors (L, M, R); then, (ii) after choosing,
say, the middle door, the host will randomly and uniformly open
a door (L, M, R) that cannot be neither the chosen door nor the
one with the prize; (iii) we then observe that the host opens, e.g.,
the left door (L); and, upon this, (iv) we renormalize the remaining
probabilities and conclude we should switch to the right door (R):
it doubles our chances of getting the prize.

(i) LY+ 5IM)+3IR)
(i) §ILYRY + LML) + 2 [M)IR) + 3 [R)|L)

(i) SHHRT + § IM)IL) + Z AAHRT + 5 [R)IL)

(v)  FIMILY + S IR)L).

The phenomenon we seek to study occurs at the last two steps.
We (iii) obtain something that is not a full distribution, but only
a subdistribution; and then (iv) we multiply by a constant — by
2, in this example — to obtain again a distribution. This interplay
between normalized and unnormalized distributions leads one to
pick substochastic kernels for probabilistic semantics: functions
X — DMY, for D the distribution monad and M the maybe monad.

However, we may wish to avoid substochasticity: if the last two
steps were compressed into one, subdistributions would never ap-
pear. Instead, we would work with normalized kernels, X — MDY,

normalized kernels? Is that what we just did?
The quest for a category with normalized kernels as morphisms
has brought us multiple techniques. Let us review some.

(a) Work up-to-scalar. Two subdistributions, d;,d, € DMX,
share their normalization whenever there exists some positive real
number, A € R*, such that d; (x) = A - d3(x). Working up-to-scalar
means bringing this idea to kernels [ ,8§6.2; , Definition
2.9]: we identify two substochastic kernels, fi, fo: X — DMY, up
to scalar multiplication, f; = f;, whenever, for some positive real
A € R*, we have

filxsy) =4+ falx;y).
Although compositional, this quotienting does not identify a kernel
with its normalization: the normalization constant of a substochas-
tic kernels depends on the input.

(b) Work up-to-parameterized-scalar. The obvious solution
is to allow the normalization constant to depend on the input. In
practice, this identifies two kernels, fi = f;, whenever there exists
a family of positive reals, A(x) € R* for each x € X, satisfying

filx;y) = A(x) - fa(x;y).

This quotienting yields normalized kernels, X — MDY, but it
stops being preserved by composition. Abstractly, the normalized
morphisms of any partial Markov category are not necessarily closed
under composition [ , Definitions 3.1 and 3.19].

(c) Work up-to-failure. A more radical solution does yield a
category: the so-called black-hole semantics [ , ]. Black-
hole semantics arises from a valid distributive law casting any
subdistribution into a distribution,

(=)*: DMX — MDX.

From an abstract point of view, the Kleisli category of this distribu-
tive law, the category of partial stochastic kernels, is the paradig-
matic example of a quasi-Markov category [ , ]

() = 1, ifd(L) > 0;
- d, otherwise.

Alas, this distributive law is not helpful for our purposes: it returns
failure whenever the input is not a full distribution. Because it
equates any probability of failure to failure, we miss the solution to
any problem involving subdistributions.

Accepting Normalization. None of these solutions constructs
a category of normalized kernels. Should we continue this quest?
Have we missed further solutions? Fortunately, Sokolova and Wo-
racek classified all possible single-point extensions of distributions
[ ], which allows us to identify the only functorial one: the
only candidate category of normalized kernels arises from working
up-to-failure; in other words, it has black-hole semantics.



Corollary 1.1 (from [ , Theorem 5.3]). Black-hole semantics
(Proposition 3.5) determines the only distributive law between the
distribution monad and the maybe monad, DM — MD.

This manuscript argues that we should embrace this result: there
is no category of normalized kernels, but a magmoid of normalized
kernels. Normalized kernel composition is non-associative.

Indeed, the Monty Hall problem admits another parenthesization.
Imagine we consider everything since the action of the host as a
parenthesized subproblem and we (iv) normalize internally before
(v) normalizing globally.

(i) LIy +3IM)+1R)
(i) S IRY + 5 M) (5 1Ly + 3 |R)) + 5 [R)IL)
(ii)) 5 IL)RY + 5 IM) (3 |L) + 2485) + 5 IR)IL)
(v) 3 IMILY + 5 IR

) FIMIL)Y+ 3 IR)L).

In this case, (iii) we intervene to force the host to open the left
door — say, the game show halts otherwise. Because it is forced, the
host’s decision stops carrying any inferential information: we are
equally likely to see it no matter where the prize is.

The interpretation of the Monty Hall problem has been famously
controversial [ , v5]. Arguably, the difference of interpreta-
tion is clearer knowing that normalized kernel composition is not
associative: when to normalize does change the result.

Still, normalized kernels have a rich algebraic structure: both
in the discrete and the continuous case, normalized kernels form
a monoidal non-associative category with copy-discard maps and
conditionals (Theorems 7.9 and 8.7). The category of substochastic
kernels acts on the non-associative category of normalized ker-
nels (Corollaries 4.13 and 8.6): updates act on priors. Normalization,
DMX — MDX, is almost a distributive law, and it interacts with
the actual distributive law of subdistributions (Theorems 4.7 and
8.4). Associativity may be unnecessary, after all: associative up-
dating semantics re-emerges from sytematic left-association. We
abstract all this algebra of normalized kernels, without associativity,
into a structure we dub a Markov magmoid.

1.1 Related work

Probabilistic programming semantics employs substochastic ker-
nels, starting with Kozen’s [ ] and Panangaden’s substochas-
tic variant of the Giry monad [ , ]. Since these, both
operational [ R R s ] and denotational se-
mantics [ , , ] predominantly account for re-
jection with substochastic [ , ] or unnormalized kernels
[ , R s ], with normalization sporadically
justifying program equations [ ]. Probabilistic programming
languages either normalize as a program transformation [ 1,
or let their inference algorithms handle it [ , ].

Categorical probability theory, in a line of work starting from
Golubtsov, Cho and Jacobs, and Fritz, has abstracted stochastic
kernels into Markov categories [ , , ]. Further work
has abstracted substochastic kernels and partial stochastic kernels
into partial Markov categories [ ] and quasi-Markov categories
[ ], respectively. In particular, string diagrammatic methods
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can model Pearl’s causal interventions [ ] by syntactic substi-
tution [ , R ]. At the same time, multiple string dia-
grammatic axiomatizations of normalization have been proposed,
we highlight those in terms of normalization boxes [ , ]
and partial Markov categories [ ]. Simpson’s probability sheaves
constitute another approach to synthetic probability theory [ ,
]; for which Stein recently proposed a comparison [ ].

Jacobs’ hypernormalization | ] — generalized by Garner via
tricocycloids [ ] — is an alternative to normalization: we relate
this approach to sesquilaws by proving that every tricocycloid
induces a sesquilaw (see Appendix, Theorem J.1), while not all
Set-based sesquilaws arise from a tricocycloid.

Magmoids and failing distributive laws are relatively infrequent:
Munch-Maccagnoni [ ] proposed a non-natural monad-co-
monad distributive law [ ] and its magmoid to unify call-
by-name and call-by-value. In probability, mass and chance inter-
pretations determine a non-natural distributive law, DD — DD
[ ]. Weak distributive laws, instead, [ , s ]
appear in imprecise probability [ , , ], as distribu-
tive laws are insufficient for systems with non-determinism and
probability [ ]. In this non-deterministic case, with applica-
tions to probabilistic trace semantics [ R s ], Bonchi,
Sokolova, and Vignudelli distinguished possibilistic monads for
may, must, and may-must semantics [ , ]; via sup-
port (c.f. [ ]), we relate these to normalized kernels, partial
stochastic kernels, and substochastic kernels, respectively.

1.2 Contributions

Normalized kernels do not form a category (Proposition 2.6); we
introduce monoidal magmoids (Definition 2.12) — a coherent notion
of monoidal non-associative category —and we prove that norma-
lized kernels form a monoidal magmoid with extra structure that
we dub a Markov magmoid (Theorem 7.9). Normalization is not a
distributive law (Proposition 3.7); we introduce sesquilaws (Defini-
tion 4.6); we show that sesquilaws yield the renormalization axiom
(Theorem 4.8), a right monad action (Lemma 4.11), and a category
action on their magmoid (Theorem 4.12); we prove that normali-
zation forms a sesquilaw (Theorem 4.7). Moreover, we prove that
support is a morphism to the possibilistic sesquilaw (Proposition
5.6 and Corollary 5.9). In the continuous case, we prove that norma-
lized kernels form a sesquilaw and a Markov magmoid (Theorems
8.4 and 8.7).

Finally, we introduce commutativity for monoidal magmoids
(Definition 6.3) and their string diagrams (Theorem 6.7); we spe-
cialize the axioms of Markov magmoids to discrete probability
(Definition 9.1) and we derive a synthetic version of the back-door
and front-door adjustment formulas from causality theory (Proposi-
tions 9.6 and 9.8). We introduce a left-associative monadic notation
with magmoidal semantics (Definition 9.11) to compute problems
in causality theory (Example 9.13).

1.3 Synopsis

Section 2 introduces the monoidal magmoid of normalized kernels.
Section 3 is a background section on distributive laws, while Sec-
tion 4 introduces sesquilaws. Section 5 compares the probabilistic
and possibilistic cases. Section 6 develops commutative magmoids
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and their string diagrams. Section 7 introduces Markov magmoids.
Section 8 studies normalization in standard Borel spaces. Section 9
presents a specialized application to causality. We provide detailed
proofs in the Appendix.

2 Normalization

Normalization is difficult to classify categorically. While it is a
fundamental operation of probability theory, it is generally re-
garded as ill-behaved [ ]. While it induces a natural trans-
formation that braids the distribution (D) and maybe (M) mon-
ads, ny: DMX — MDX (Definition 2.2), it is not a distributive
law. And, while it induces a composition of normalized kernels,
(3)x,v,z: Norm(X;Y) X Norm(Y;Z) — Norm(X; Z), it is not asso-
ciative.

This section explains this missing algebra: we introduce nor-
malization as a monoidal natural transformation in Section 2.1;
we recall non-associative categories and monoidal non-associative
categories in Sections 2.2 and 2.3; and we finally contribute a co-
herent notion of monoidal magmoid, that allows us to structure
normalized kernels, in Section 2.4.

2.1 Normalization

Normalization is inherently partial — it contains a potential division
by zero — but explicitly dealing with partiality is tedious. Instead,
note that normalized distributions are, equivalently, subdistribu-
tions adding up to exactly 0 or 1,

Zd(x):Oor Zd(x)zl}.

MDX = {d € DMX
xeX xeX

Under this interpretation, zero means failure.

Definition 2.1 (Bracketed division). Let us convene that

AR

Definition 2.2 (Normalization). Normalization is the natural trans-
formation, ny : DMX — MDX, defined by

f(x) ]
Zx’EX f(xl) .

Normalization is a monoidal natural transformation. Both the
finitary distribution monad (D) and the maybe monad (M) are mo-
noidal monads on sets: both their Kleisli categories, Stoch and Par,
are copy-discard categories. Normalization inherits this structure.

when v # 0,

when v = 0.

n(f)(x) =

Proposition 2.3. Normalization, nx : DMX — MDX, is a monoidal
natural transformation. Normalization of independent distributions is
the joint normalization of the distributions, n(f ® g) = n(f) ® n(g).

f(x) -9 _ [ f 1. [ 9(y) ]
ZuEX,UEY f(ll) . g(li) ZuGX f(u) ZZJEY g(l)) '

Were normalization to form a distributive law, its Kleisli category,
Norm, would also be monoidal. Perhaps surprisingly, normalization
fails to form a distributive law (see Proposition 3.7); and this poten-
tial Kleisli category is instead a Kleisli non-associative category.

2.2 Normalized kernels are not associative

Defining non-associative “categories” is straightforward: we repeat
the definition of category, but without associativity (c.f. [ .
Let us set aside any more technical definition for now and construct
the non-associative category of normalized kernels.

Definition 2.4 (Non-associative category). A non-associative cate-
gory, C, consists of collections of objects and morphisms, C(X;Y),
for each two objects X,Y € C,p;, equipped with a composition
operation, (§): C(X;Y)xC(Y;Z) — C(X;Z), and identities, idx €
C(X;X), that are unital, meaning that f §idy = f =idx § f.

Proposition 2.5 (Non-associative category of normalized kernels).
Normalized kernels between sets, X — MDY, form a non-associative
category, Norm, where composition of two morphisms, f : X — MDY
andg: Y — MDZ, is defined by

(fgg)(X,Z) — Zve)’f(x3u).'g(u3z). )

Divey Dwez f(x:0) - g(o;w)

In other words, if we consider the associated substochastic kernels,
f*: X - DMY and g*: Y — DMZ, it is the normalization of their
composition as subdistributions, f g =n(f*; g°).

Proposition 2.6. Normalized kernels are not associative.

Remark 2.7. It may be clarifying to symbolically check for associa-
tivity. Arguably, left-associated composition simplifies as expected,
Xy f(y) - g(y:2) - h(z:w) ] .
Zyzw f(659) - 9(y;2) - h(zw) |
while right-associated composition may contain different normali-

zation constants on the numerator and the denominator, preventing
a similar simplification,

((f59) s (x;w) =[

. Y2 9(ysz) h(zw)
Sy fey) - | St |
. 2z 9(y5z) -h(z;w)
Yywf(y) - [W]

Because of this assymetry, left-associativity will later be our default.

(f5(gsm)(x;sw) =

2.3 Normalized kernels are monoidal

Monoidal non-associative categories can be defined naively (Def-
inition 2.8): functors and natural transformations work as usual.
Only coherence requires some care: the pentagon equation [ ]
is ambiguous in the absence of associativity. Let us briefly post-
pone coherence — and braiding equations — to first construct the
monoidal non-associative category of normalized kernels.

Definition 2.8 (Monoidal non-associative category). A monoidal
non-associative category is a non-associative category, C, endowed
with binary and nullary functors, (8): CXC — CandI: 1 — C,
and natural isomorphisms for associativity, ax,y,z: (X®Y)®Z —
X ® (Y ® Z), and unitality, Ax: I® X —» X and px: X ® [ — X.

A monoidal non-associative category is symmetric when it is
moreover endowed with a natural isomorphism representing sym-
metry, oxy: X®Y - Y ®X.

Proposition 2.9. Normalized kernels form a symmetric monoidal
non-associative category with the cartesian product, where the tensor
of fi: X1 = Yy and fo: Xo — Y, is given by

(fi ® f2) (x1, x23y1, Y2) = filxi;91) - fa(x2592)-



2.4 Magmoids

Let us now address coherence: coherence needs structural maps to
be associative, but associative morphisms are not even necessarily
closed under tensoring.

Still, we may explicitly pick a closed class of associative mor-
phisms:! we reserve the name magmoid, in this text, for a non-
associative category with a chosen subcategory of associative mor-
phisms (Definition 2.11), a concept that we introduce to address
coherence (Definition 2.12). Indeed, monoidal magmoids are coher-
ent thanks to this base monoidal category (Remark 2.13).

Definition 2.10 (Associative morphism). In a non-associative cat-
egory, a morphism f: X — Y is associative whenever, for each
g1: X1 — X, each go: X, — Xj, each hy: Y — Y; and each
hy: Yy — Y, we have that (g2 §91) § f = g2 3 (91 5 f), that
(918f)§h1 =915(f§h1), and that (f §h1) § ha = (f § 1) § ho.

Definition 2.11 (Magmoid). A magmoid consists of a non-associative
category M, a category A, and an identity-on-objects functor,

(_)T: A — M,
whose image is associative.

Definition 2.12 (Monoidal magmoid). A monoidal magmoid con-
sists of a monoidal non-associative category (M, ®,I), a monoidal
category (A, ®,1), and an identity-on-objects functor strictly pre-
serving the monoidal structure, (—);: A — M, whose image is
associative. A monoidal magmoid is symmetric when its category,
non-associative category, and functor are.

Remark 2.13 (Coherence for monoidal magmoids). Monoidal mag-
moids are strict when their base monoidal category is. As a conse-
quence, they can be strictified.?

Even when normalized kernels do not associate, they do in some
useful cases (Proposition 2.14). In particular, functions are associa-
tive, and we pick them as the base monoidal category.

Proposition 2.14. In the normalization magmoid, the associativity
equation f § (g §h) = (f §g) § h holds when either

(1) the kernel f lifts a partial function, X — MY, or
(2) the kernel g lifts a partial function, X — MY, or
(3) the kernel h lifts a stochastic kernel, X — DY.

In particular, associativity holds whenever any of the three lifts a
function X — Y: functions are associative morphisms.

Proposition 2.15. Normalized kernels form a symmetric monoidal
magmoid over the category of sets and functions, (—);: Set — Norm.

However, the monoidal magmoid of normalized kernels is spe-
cial: it satisfies properties that are not true in arbitrary monoidal
magmoids. To study these, we adapt distributive laws.

This technique is common in the categorical semantics of effectful programs [

], where one must distinguish a subclass of pure morphisms. Technically,
we use non-associative monoidal promonads.
2 Alternatively, monoidal magmoids are pseudomonoids of the bicategory of non-
associative promonads (c.f. [ ]), with associative natural transformations. By
coherence for pseudomonoids [ ], every monoidal magmoid is strictifiable.
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3 Distributive Laws

Distributive laws [ ], their uses and limitations [ ], are
well-known. Briefly, the composition of two monads is not a monad
again —in general, the tensor of two monoids is not a monoid
again — but distributive laws endow this composition with monad
structure.

Definition 3.1 (Distributive law [ 1, V). A distributive law
between two monads, (S, ys, r]s) and (T, pT, r]T), on the same cat-
egory is a natural transformation, ¢: TS — ST, that makes the
following four diagrams commute.

T
TTSX —"—5 Tsx —V 5 sTX

T%L /////Z (1)
YT su'
TSTX —— STTX

TS Vv
TSSX — TSX —— STX

vs| / @)
sy #T
STSX —— SSTX

I]ST SI]T
TX —— STX SX —— STX
s T (3,4
w7 sl
TSX TSX

Definition 3.2 (Monoidal distributive law). A monoidal distributive
lawbetween two monoidal monads, (S, g, 1, u,v) and (T, @/, n’, u’, "),
is a distributive law whose transformation, yx: TSX — STX, is
monoidal.

Proposition 3.3 ([ 1. A distributive law, yx: TSX — STX,
between two monads, (S, ys, 175) and (T, yT, nT), induces a monad
structure on the composite functor ST. Given two monoidal monads,
a monoidal distributive law between them induces a monoidal monad
structure on the composite functor.

3.1 Example: substochastic kernels

Substochastic kernels, functions of the form X — DMY, form a
monoidal category, subStoch, induced by a monoidal distributive
law, MD — DM. Thanks to this law, normalized kernels can be seen
as particular substochastic kernels with a different composition.

Proposition 3.4 (Subdistributions). Inclusion of normalized dis-
tributions into subdistributions, (=)*: MDX — DMX, defined on
distributions by (L)* = 1|L) and d* = d and on morphisms by
f*(x;y) = f(x;y), induces a monoidal distributive law.

The monoidal Kleisli category of this distributive law is the category
of substochastic kernels, subStoch.

3.2 Example: partial stochastic kernels

Partial stochastic kernels, functions f: X — MDY, correspond to
normalized kernels, albeit with a different composition operation.
The category of partial stochastic kernels, parStoch, composes two
normalized kernels, f: X — MDY and g: Y — MDZ, into

(Fs9)(s2) =] > flxy) -gw2) =1]- > fxy) g(y:2),

vz’ €Y yeY

which, using Iverson brackets, is zero when not a full distribution.
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Proposition 3.5. The natural transformation (-)*: DM — MD
defined by f+(x) = f(x) - [y f(x) = 1], induces a monoidal dis-
tributive law. Its Kleisli category is the category of partial stochastic
kernels, parStoch.

Remark 3.6. Partial stochastic kernels are the paradigmatic exam-
ple of quasi-Markov category [ , ]. While this quasi-
Markov category plays a role in black-hole semantics, it does not
provide updating semantics nor it addresses the problem of norma-
lization: indeed, it is useful precisely because it marks with failure
whenever a normalization problem is encountered.

3.3 Counterexample: normalized kernels

Normalization satisfies all of the axioms of a distributive law, ex-
cept for one: the D-multiplicativity axiom. Next section develops
normalization not as a distributive law, but as a sesquilaw.

Proposition 3.7. Normalization is not a distributive law.

Proor. We show that D-multiplicativity fails. Consider the set
A = {x, y} and pick the following distribution over subdistributions:

31310+ 310) + 3 [319) + 1 11)) € DDMA.

Computing both sides of the diagram in Equation 1 (Definition 3.1)
yields different expressions. On the left-hand side, we (i) normalize
internally, (ii) normalize externally and (iii) multiply.

P30+ 3+ 3151y +311)

(i), by (Dn) 2
N 3 1) + 2 1ly)) +0]L)
(ii), by (nD) 2 2

= 3 1)) + 5 11y

(iii), by (p)
- 31+ 31y

On the right-hand side, we (i) multiply and (ii) normalize.

213+ 51L) + 515 v + 3 11))

(i), by (p)
e L+ LI+ )+ 1L
i), by (n) ¢ ;
= 3 +51y).
However, % [x) + % ly) # % |x) + % ly). o

4 Sesquilaws

Sesquilaws are a particular form of failing distributive law. We
define sesquilaws to be sections to an actual distributive law that
satisfy all distributive law axioms except for the first one, which is
only satisfied up to idempotent. In particular, because they fail one
of the axioms, they are almost-distributive laws.

4.1 Almost-distributive laws

An almost-distributive law could be any candidate distributive law
failing one of the axioms. Specifically, we could define non-S-
multiplicative, non-S-unital, non-T-multiplicative, and non-T-uni-
tal almost-distributive laws, respectively. In this terminology, a
weak distributive law [ R R R ] would be a non-T-
unital almost-distributive law or, sometimes, a non-S-unital almost-
distributive law. For the rest of the text, however, let us focus on
non-T-multiplicative almost-distributive laws, and simply call them
almost-distributive laws.

Definition 4.1 (Almost-distributive law). An almost-distributive
law is a candidate distributive law, ¢y: TS — ST, failing the T-
multiplicativity axiom. A monoidal almost distributive law between
two monoidal monads is an almost-distributive law whose underly-
ing natural transformation is monoidal.

Definition 4.2 (Non-associative monad). A non-associative monad
over a category C consists of an endofunctor, T: C — C, together
with natural transformations nx: X — TX and px: TTX — TX
satisfying the unitality equations, Tnx$ux = idx and nrx$pux = idx,
but not necessarily the multiplicativity equations. It is monoidal
whenever these transformations are.

Proposition 4.3. Almost-distributive laws, Yix : TSX — STX, in-
duce non-associative monads on their composite functors, ST. Monoi-
dal almost distributive laws induce monoidal non-associative monads
on their composite functors.

Proposition 4.4 (Kleisli magmoids). Any non-associative monad,
(R, 1R, n®) over a category C, induces a magmoid, (C,K(R)). Any
monoidal non-associative monad induces a monoidal magmoid.

Proposition 4.5. Normalization, nxy: DMX — MDX, forms an
almost-distributive law.

Normalization, the monoidal almost-distributive law, induces
the Kleisli monoidal magmoid of normalized kernels, Norm. To-
gether with the distributive law describing subdistributions, we
have “one and a half” distributive laws that interact with each other:
a sesquilaw.

4.2 Sesquilaws

To recap, normalization, n(—): DM — MD, satisfies all distribu-
tive law axioms except for the D-multiplicativity axiom. Still, nor-
malization satisfies an equation resembling this missing multipli-
cativity: n(n(f)®*;g9) = n(f;g), for any two substochastic ker-
nels. Careful inspection reveals that the D-multiplicativity axiom
holds up-to-an-idempotent: the distributive law of subdistributions,
(=)*: MD — DM, is the partial inverse inducing this idempotent.

Distributive sesquilaws — or, simply, sesquilaws — abstract this
situation with a single extra equation. This equation consists of
multiplicativity up to the idempotent determined by a section-
retraction pair of two distributive law candidates.

Definition 4.6 (Sesquilaw, V). A sesquilaw, (S, T, m, n), between
two monads (S, ;15, 175 ) and (T, ,uT, r]T), consists of a distributive law,
mx: STX — TSX, and an almost distributive law, nx: TSX —
STX, forming a section-retraction pair, m § n = id, and making the
following diagram commute.

Tn nT SpT
TTSX » TSTX > STTX —— STX
T"J/ /

Tm u's
TSTX » TTSX > TSX

Alternatively, but equivalently, a sesquilaw must make the following
diagram commute.

nT suT
TSTX ——> STTX —— STX

mo A

TTSX —22% TSX



A sesquilaw is monoidal whenever its transformation is.
Theorem 4.7. Normalization and subdistributions form a sesquilaw.

A sesquilaw is enough to abstractly prove multiple useful facts
about normalization. For the rest of this section, we synthetically
derive structure from the sesquilaw axioms.

Theorem 4.8 (Renormalization). Any sesquilaw, (S, T, m,n), in-
duces an idempotent, k = (n § m): TS — TS. This idempotent is
left-absorptive, meaning the following diagram commutes.

TS
TSTSX s TSX —K Tsx

kTSJ/ /
TS k

TSTSX —“— TSX

Corollary 4.9 (Renormalization). The following equation holds for
substochastic kernels (c.f. [ , Proposition 3.12; , §4.1]).

n(f39) =nn(f);9).
Remark 4.10. For instance, sequential Monte Carlo simulations nor-
malize and resample after each observation for efficiency reasons
[ , Algorithm 1]. Renormalization guarantees the soundness
of this transformation [ , §4.1].

Lemma 4.11. Any sesquilaw, (S, T, m, n), induces a right action of
the monad TS into the non-associative monad ST: a natural trans-
formation, ux : STTSX — STX, making the following two diagrams
commute.

TS STuTS
STX —— STTSX STTSTSX —— STTSX

S urs) !

STX STTSX ——— STX

This action is defined by either side of the following commutative
diagram.

su’'s msS
STTSX —— STSX —— TSSX
mTS\l/ Ty

T,S
TSTSX ™Sy TTSSX X% TSX —" 3 STX

This general phenomenon for sesquilaws extends automatically
to the Kleisli magmoids induced by them: the Kleisli category of the
monad acts on the Kleisli magmoid of the non-associative monad.

Theorem 4.12. In the setting of a sesquilaw, (S, T, m, n), the Kleisli
category of the distributive law, K(m), acts on the Kleisli magmoid
of the almost distributive law, K(n).

Corollary 4.13. Normalized kernels admit an action from sub-
stochastic kernels, defined by p <« f =n(p*®; f).

(<): Norm(X;Y) X subStoch(Y;Z) — Norm(X; Z).
That is, satisfying p<id =p andp<(f;9) =p<f<g.

5 Possibilistic normalization

Probability and possibility are related by supports: the support of a
distribution is its subset of possible outcomes, forgetting about the
specific probabilities of any of them. So far, we have defined three
categories and one magmoid of probabilistic kernels; this section
defines their possibilistic analogues and relates them by a support
morphism.
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Probabilistic Possibilistic
Stochastic kernel Affine relation
Substochastic kernel Subaffine relation
Partial stochastic kernel | Partial affine relation

Normalized kernel Relation

Definition 5.1 (Affine powerset monad). The affine powerset mo-
nad (ox, non-empty finitary powerset monad), R: Set — Set, assigns
to a set its non-empty finite subsets,

RX ={U € X | U finite, and U # @}.

An affine relation, f: X — RY, is a finitary relation such that, for
each x € X, there exists some y € Y related to it, f(x;y). Affine
relations form a category, affRel, the Kleisli category of the affine
powerset monad. Note how the powerset functor is PX = MRX.

Definition 5.2. Post-selection, p(—): RMX — MRX, is the natural
transformation that removes failure if it can and fails only if it must.
Explicitly, it is defined by p(AU{L}) = p(A) = A, for each A € RX,
and p({L}) = @. In other words, it is the join-preserving function
satisfying p({x}) = {x} and p({1}) = @.

Proposition 5.3. Post-selection is a monoidal sesquilaw.

5.1 Support, a sesquilaw homomorphism

Definition 5.4 (Support). The support of a distribution, d € DX,
is the subset

suppx (d) = {x | d(x) > 0},
which cannot be empty because d is a full distribution. Support
determines a family of functions, suppx : DX — RX, that extends
to a natural transformation.

Definition 5.5 (Sesquilaw homomorphism). A sesquilaw homo-
morphism between two sesquilaws, (S, T, er, or) and (S, R, eg, or),
sharing their left monad, is a natural transformation a: T — R that
is a monad homomorphism — meaning that yr §a = (a - @) § ug and
nr ¢ @ = nr — and that, moreover, commutes with the sesquilaw —
meaning that the following two diagrams commute.

ST —5%3 SR ST —5%% SR
S
TS —%55 RS TS %53 RS

Proposition 5.6. Support, suppx: DX — RX, is a sesquilaw ho-
momorphism between normalization and post-selection.

5.2 Subaffine relations, partial affine relations

The possibilistic analogues of substochastic kernels (subStoch) and
partial stochastic kernels (parStoch) are two lesser-known cate-
gories of relations: may-must relations [ ] (which we call sub-
affine relations), helpful in trace semantics; and Dijkstra relations
[ ] (o, partial affine relations), helpful for program logics.

Definition 5.7 (Subaffine relations). The category subRel of sub-
affine relations (or, may-must relations) has, as morphisms, the
failure-contemplating relations, f: X — RMY, and composition
(;) is defined by

(f39)(x2) =Fyey f(x:9) A g(y; 2),
(f39) (1) = f(x; 1)V Iyey f(x:y) Ag(y; L).
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Definition 5.8 (Partial affine relations, [ ,5.14]). The category
of partial affine relations (or, relations with Dijkstra composition),
parRel, has relations as morphisms, f: X — MRY, but composition
() is instead defined by the formula

(f *9)(x;2) = (Fyev f(x:9) A g(y; 2))A
(Byey f(x;y) A g(y; 1)),

where g(y; L) means that g(y) = L. In other words, composition
fails if there is a possibility for it to fail.

Corollary 5.9 (Support functors). Support extends to four strict
monoidal identity-on-objects functors.

(1) supp: Stoch — affRel;

(2) supp: subStoch — subRel;
(3) supp: parStoch — parRel;
(4) supp: Norm — Rel.

Arguably, then, the stochastic analogue of the category of re-
lations is the magmoid of normalized kernels, even if it is only a
magmoid. Conversely, from this point of view, what is unexpected
is that the magmoid of relations happens to be a category.

6 Left and right commutativivity

Probabilistic programming with monoidal magmoids raises sub-
tleties. For instance, we expect commutativity for probabilistic pro-
grams [ , , ]: reordering the lines of a program
must not change its meaning, as long as the lines do not depend
on each other. That is, whenever x is free in ¢ and y is free in s, the
following equation holds.

Do ... p Do ... p
X <- s y <- t
y <- t X <- s
...q ...q

In terms of string diagrams, boxes may pass each other, as long
as no directed path exists between them.

[ e ] [ e ]
] ]
Ce ] | s
I I
| |

b | [ »
I I (5)
Commutativity is usually identified with monoidality and, specifi-
cally, with the interchange equation, (s ® id) § (id® ) = (id®t) §
(s ® id). Perhaps surprisingly, magmoids distinguish monoidality
and two analogues of commutativity.

Let us introduce, in Section 6.1, left commutative magmoids and
right commutative magmoids, two analogues of commutativity in
the magmoidal case. In Section 6.2, we derive string diagrams for
left commutative magmoids.

Remark 6.1 (Intermediate boxes). Before continuing, let us pick
the convention — motivated by Remark 2.7 — that string diagrams

are, implicitly, left-associative.® This means that, to describe right-
associating composition, we must write it explicitly, inside its own
box; we depict these intermediate box as blue boxes.

| |
L] L]

This is much in the same way that, when declaring that a binary
operation — say, composition (§) — is left-associative, we must use
parentheses only to express right-associating composition.

fs@shy#fsgsh=(f393sh

6.1 Commutative magmoids

Commutativity does not follow from monoidality. Indeed, reading
the string diagrams in Equation (5), we obtain the two following
expressions, which are not equated by the axioms of monoidal
magmoids.

((a3(s®id)3(id®t))sb # ((a3(id®t))3(s®id))3b.
Thus, commutativity becomes an independent axiom.

Definition 6.2 (Commutative non-associative monad). A com-
mutative non-associative monad, (T, u,n,u,v), is a monoidal non-
associative monad such that the following two rectangles commute.

TT(TX®Y) —3 T(TX ® Y) -5 TT(X ® Y)

o] 1

T(TX®TY) 5 TT(X®Y) —— T(X®Y)

o T

Tor

TT(X®TY) —— T(X®TY) —% TT(X ®Y)

Here, o, = (id ® ) ¢ u and og = ( ® id) § u are the left and right
strengths of the monad.

Definition 6.3 (Left commutative magmoid). A left commutative
magmoid is a monoidal magmoid such that

(f3(g®id)5(id®h) =f5(9® h);
(fs(idoh)s(geid) =f5(geh);

while a right commutative magmoid is such that

(feids((ideg)sh) =(feg9) sh
(fs(ideh))s(g®id) =f5(g@h).

Proposition 6.4 (Monoidal monads are commutative). A monoidal
(associative!) monad is, in particular, a commutative non-associative
monad. In other words, in the presence of associativity, monoidality
and commutativity coincide.

Proposition 6.5. Monoidal sesquilaws induce commutative non-
associative monads. Commutative non-associative monads induce
Kleisli left commutative magmoids.

3A similar discussion holds if we were to pick the opposite precendence: we would

develop a theory of right commutative diagrams. This theory would be less convenient
for our purposes, as we shall see later.



Remark 6.6. Commutative non-associative monads do not induce
right commutative magmoids: in fact, normalized kernels form a left
commutative magmoid that is not a right commutative magmoid.

6.2 String diagrams for commutative magmoids

Let us close this section by formalizing string diagrams for com-
mutative magmoids. We prove that commutative magmoids are
non-multiplicative algebras of string diagrams. This means that we
have an interpretation for each string diagram of morphisms in
a commutative magmoid, but this interpretation is not invariant
under substitution. As a result, we need to keep the intermediate
boxes of Remark 6.1.

Theorem 6.7. Left commutative magmoids are non-multiplicative
algebras of the string diagrams monad over tensor schemas, in the
sense of Joyal and Street [ /591, Definition 1.4].

Moreover, these algebras satisfy the following equations for any
two diagrams a and f: we call them (i) left-bias, and (ii) monoidality.

|, @
D D

)
COIREDINICDRED

Remark 6.8 (Reading string diagrams). The reader unfamiliar with
string diagrams may prefer reading them directly as normalized
kernels. One can read string diagram boxes as kernels by assigning
a variable to each one of the wires that appear on it: all inner wires
(those that do not touch the boundaries of the box) must be bound
to a summation; all nodes (regarding any inner boxes as nodes)
must be multiplied together; and the whole expression must be
normalized at the end. As a shortcut, multiple wires connected by a
copy or delete node are regarded as a single wire (c.f. [J591, 1.

For instance, the left-hand side of the previous monoidality ax-
iom (ii) reads as follows. It contains five wires: the input x; two
inner wires, u; and u,; and two outputs, y and z. At the outer level,
it contains three nodes: y, and two boxes for a and . We multiply
these three nodes together, we sum over the inner wires, and, fi-
nally, we divide by the same expression, now summing also over
outputs.

Zul,uz Y(xQul; uz) . [Za(ul;y) . [ Puz;z)

ya(uiy’) 2z Bluziz’)
. a(u13y) Bluz;z)
Loy ¥ (41, Uz) - [z;,adl;y')] ’ [zz, ﬁ'(zuz;z')]

Remark 6.9 (Normalization boxes). The previous result explains
the emergence of normalization boxes in categorical probability
[ , , ]. String diagrams are insufficient to modulate
the non-associativity of normalization, and multiple authors — even
without arguing for a magmoid structure — employ these boxes.*

“Note, however, that the one presented here is different from other axiomatizations of
normalization boxes [ s ]. In particular, normalization is not asked to be the
identity on quasitotal morphisms, which allows post-selection to become an example.
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7 Markov magmoids

Until here, we studied general monoidal magmoids. Let us focus on
the structure most relevant to probability. Markov magmoids are
those commutative magmoids admitting conditionals, a synthetic
analogue of Bayesian disintegration [ , ]. While inspired
by Markov categories, we need to carefully adapt their definition
to account for updates and non-associativity. Let us incrementally
build it.

We first introduce the sesquilaw analogue of copy-discard cate-
gories: copy-discard sesquilaws, which separate an affine monad
for probability and a relevant monad for partiality.

7.1 Copy-discard magmoids

In a cartesian monoidal category, morphisms can be freely copied
and discarded [ ]. Copy-discard sesquilaws are a specialized
form of sesquilaw where one of the monad carries discardable
effects (affine: total but non-deterministic) and the other carries
copyable effects (relevant: partial but deterministic). For these two
classes of effects, we have two classes of monads.

Definition 7.1 (Affine & relevant monoidal monads, [ . A
monoidal monad, (T, y 1,u,v), over a cartesian monoidal category
(C,%,1,0,¢), is affine (or, total) whenever dpx § ux,x = Tdx; and it
is relevant (or, deterministic) whenever epx § v = Tex.”

Definition 7.2 (Copy-discard sesquilaw). A copy-discard sesqui-
law, (S, T, m, n), is a monoidal sesquilaw over a cartesian monoidal
category, (C, %, 1,9, ¢), between an affine monad, (T, yT, r]T, ul, oT),
and a relevant monad, (S, 1%, 3%, u5, 0%).

Definition 7.3 (Copy-discard magmoid). A copy-discard magmoid,
(=)1: € > M, is a symmetric commutative magmoid whose base,
(G, %, 1,6, ¢), is cartesian monoidal.

7.2 Quasitotal magmoids

An important axiom of Markov categories [ ] is totality: the
unused output of a kernel can be discarded without affecting the
computation. Totality can be refined to account for updates: the
resulting notion is quasitotality [ , 1.

Definition 7.4 (Quasitotal magmoid). A quasitotal magmoid is
a copy-discard magmoid in which every morphism is quasito-
tal [ , Definition 3.1], meaning that it satisfies the following
equation stating that it is discardable after copied.

IRV

Proposition 7.5. Any copy-discard sesquilaw induces a quasito-
tal magmoid. As a corollary, normalized kernels are quasitotal: and,
exemplifying Remark 6.8, the following equation holds for any nor-
malized kernel f: X — MDY.

Yy fay) - fay)
Zy,y’ f(x»y) 'f(X;y’)

SEquivalently, a monad is affine exactly when #;: 1 — T1 is an isomorphism. While
the usual formulation of affine and relevant monads is in terms of strength [ ], we
only require their monoidal version.

= f(x;y).
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Still, we have four types of morphisms in a quasitotal magmoid:
(i) base morphisms which can be copied and discarded; (ii) total
morphisms (affine), which can be discarded but not copied; (iii)
deterministic morphisms (relevant), which can be copied but not
discarded; and (iv) quasitotal morphisms.

o ; v

Our next axiom states how these associate; it has no correlate in
Markov categories, where associativity is not an issue.

Definition 7.6 (Left-relevant magmoid). A left-relevant magmoid
is a copy-discard magmoid that satisfies associativity, f § (g 3 h) =
(f39) s h, if either f is deterministic, g is deterministic, or A is total.

[

l
IJI‘I L]
I

B

h |
1

7.3 Markov magmoids

Markov magmoids are well-behaved copy-discard magmoids that
admit Bayesian inverses: in synthetic probability theory, the dis-
tinguishing axiom allowing Bayesian inverses is the existence of
conditionals [ , ].

Definition 7.7 (Conditional). A copy-discard magmoid admits
conditionals if, for any morphism f: X — Y ® Z there exists some
c: X ® Y — Z that recovers its second output conditioned on the
first, meaning that the following holds.

Definition 7.8 (Markov magmoid). A Markov magmoid is a left-
relevant quasitotal magmoid admitting conditionals.

Theorem 7.9. Normalized kernels form a Markov magmoid.

Remark 7.10. Markov magmoid are more expressive and structured
than copy-discard sesquilaws; still, most notions of probabilistic
kernel — discrete or continuous — admit this extra structure. Let us
now develop a continuous example of Markov magmoid: that of
standard Borel spaces.

8 Normalization in standard Borel spaces

Normalization fails associativity analogously in the continuous
case. Let us address measurable spaces next, applying the theory of
sesquilaws. The discrete case remains conceptually clearer, though,
and we will return to it for the last sections.

This section details the measurable case. We restrict all construc-
tions to standard Borel spaces, which later ensure the existence of
conditionals.

Definition 8.1 (Giry monad, [ , ]). The functor tak-
ing a measurable space to the set of probability measures over it,
D : BorelMes — BorelMes, forms a monad, (D, , u), whose unit,
nx: X — DX, is the Dirac delta, nx(x) = §(x; —), and whose mul-
tiplication, pux: DDX — DX, is given by Lebesgue integration,

e (Q)(U) = / )9,

It is moreover an affine monoidal monad over the cartesian mo-
noidal structure of measurable sets, with the following product of
measures,

(r1®v)(U) = /

yey

( I ) (@) el

here, £ is the indicator function and the product is commutative by
the Fubini theorem. We work with the Kleisli category of the Giry
monad restricted to standard Borel spaces, BorelStoch.

Normalization is a section to the distributive law that induces
Panangaden’s variant of the Giry monad.

Definition 8.2 (Panangaden monad, [ , §3]). Standard Borel
spaces admit coproducts and thus a Maybe monad, M : BorelMes —
BorelMes. There exists a distributive law, (=)5: DMX — MDX,
yielding a monad structure on DM (c.f. [ ]); its Kleisli category
is BorelSubstoch.

Instead of rederiving all of the properties of normalization, we
can now use the framework of sesquilaws we just developed.

Definition 8.3 (Continuous normalization). Normalization is the
natural transformation Nx: DMX — MDX defined by

v(U)

NO@) = | A -

Theorem 8.4. Normalization induces a monoidal sesquilaw.

Corollary 8.5 (Magmoid of normalized kernels). Normalized ker-
nels between standard Borel spaces, X — MDY, form a monoidal
non-associative category, BorelNorm, where composition of two ker-
nels, f: X > MDY andg: Y - MDZ, is defined by

Jyey 9:0) - fx:dy)
fyeyg(y;Z) flxidy) |

In other words, if we consider the associated substochastic kernels,
[ X - DMY and g*: Y — DMZ, it is the normalization of

their composition, f§g = N(f* ; g*). The tensor of normalized kernels
coincides with the usual one: we define (fi ® f2)((x1,x2);U) as

/ (/ Eu(y1, 42) -f(xl;dyz)) * f2 (323 dya),
Y2€Yy Y€V

The monoidal magmoid of normalized kernels, BoreINorm, has the
cartesian monoidal category of standard Borel measurable spaces at
its base, BorelMes.

(f39)(x;U) =




Corollary 8.6. Normalized kernels between standard Borel spaces
admit a monoidal category action from substochastic kernels that is
compatible with the tensor, defined by

Sy F:U) - p(x:dy)
ooy F:2) - p(xsdy)

That is, satisfying (p1 < i) ® (p2 < f2) = (p1 ® p2) < (fi ® f2), with
peid=pandp<(f;g9) =p<f<g.

Theorem 8.7. BorelNorm is a Markov magmoid.

(p<NHx:U) =

Remark 8.8. Simplifying left-associating composition requires the
monotone convergence theorem, exactly as associativity of the Giry
monad does [ , Proposition 5.2].

9 Discrete Markov magmoids

Markov magmoids can thus be discrete, or continuous. The discrete
case allows for some more structure: essentially, it allows us to
compare two values. Comparators in the continuous case, while
available, collapse: e.g., if we sample two values from a normal
distribution, X; ~ N (0,1) and X; ~ N (0, 1), then P(X; = X;) = 0.

This section introduces discrete Markov magmoids and then, in
Section 9.1, it employs their structure to derive results about causal
inference: specifically, we prove the back-door formula (Proposition
9.6) and the front-door formula (Proposition 9.8). We conclude with
an implementation in Section 9.2.

Definition 9.1 (Discrete copy-discard magmoid). A discrete copy-
discard magmoid is a copy-discard magmoid endowed with com-
parators, idempotent commutative semimonoids px: X X — X
such that pxgy = (id ® 0 ® id) § (ux ® py) and py = id, depicted as
a black two-input dot, satisfying the partial Frobenius equations.

A

Comparators allow, in the discrete case, to characterize which
normalized kernels have full support. That is, when, from each
x € X, there is a non-zero possibility of sampling each y € Y,
meaning that f(x;y) > 0 for every y € Y.

Definition 9.2 (Full support). A morphism of a discrete copy-
discard magmoid, f: X — Y, has full support whenever the follow-

ing equation holds.
e

In the following sense, comparators can be used to force the value
of a wire: sampling a value from any channel and then comparing
with xy € X outputs x,. In the next section, we shall see how this
forcing can act both an evidential update or a causal intervention,
depending on associativity.

Proposition 9.3 (Exact observations). In any discrete Markov
magmoid, the exact observation induced by any base morphism,
x: 1 — X, is the morphism x?: X — 1 defined as follows.
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Exact observations satisfy the following equation.

Definition 9.4. A discrete Markov magmoid is a left-relevant qua-
sitotal discrete copy-discard magmoid admitting conditionals.

Remark 9.5 (Failure of right commutativity). We mentioned in Sec-
tion 6.1 that normalized kernels do not form a right commutative
magmoid. We now have the language to produce a direct coun-
terexample. Consider two coins with different non-trivial biases,

eg., f=1/2la)y+1/2|b)and g =1/3|a) + 2/3|b).

Here, we use that both coins have full support.

9.1 Inference in Discrete Markov Magmoids

Discrete Markov magmoids allow us to prove basic lemmas for syn-
thetic causal inference (c.f. [ ]). As a feature, they distinguish
between interventions and observations by reparenthesizing.

Jacobs, Széles, and Stein [ ] have recently shown how par-
tial Markov categories [ ], extended with normalization boxes
[ ], can be applied to synthetic causality (c.f. [ , 1). We
now derive synthetic causality from the axioms of discrete Markov
magmoids.

Proposition 9.6 (Back-door adjustment formula). In a discrete
Markov magmoid, let a joint state, p: 1 — U ® X ® Y, admit the
following factorization into total morphisms where, moreover, f has
full support.

Then, the following equation holds.

Corollary 9.7. Let any distribution, p, with full support, on three
visible variables, U, X, and Y, such that U influences X and Y, and
that X influences Y. Then, an intervention on X can be rewritten as

_ pluxy)
Pdo(x) (Y) = Zu:ng;p(ux ) - ,Eyp(uxy)
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Pearl’s front-door formula [ ] is slightly more complicated,
and its proof uses all the axioms of Markov magmoids.

Proposition 9.8 (Front-door adjustment formula). In a discrete
Markov magmoid, let a joint state, p: 1 — X ® Z ® Y, admit the
following factorization into total morphisms where, moreover, both t
and (g § s) below have full support.

In other words, an intervention on the variable X can be rewritten as
a composition, in the Markov magmoid, of the observational data.

Corollary 9.9. Given any normalized distribution, p, on three visible
variables, X, Z and Y, and one hidden variable U, assume that U
only influences X and Y, and that the influence of X on'Y is entirely
mediated by Z.

Yy p(xzy)
Pao x(y) = Zzy Py A

p(x”z’y) ro_r o
——=—p(x, 7,
Zy’ P(x’:z’ yl) p( Y )

9.2 Magmoidal programming

Inference problems may also be described in a programming lan-
guage; this section extends the monadic metalanguage to the mag-
moidal case. The monadic metalanguage is implicitly right-associa-
tive,® but we will also define — and mostly use — a left-associative
version. This novelty means that the language admits a normalized
by construction semantics.

For the rest of the paper, definitions and computations are also
implemented in the attached Racket v9.0 code (%, [ D.

Definition 9.10 (Right do-notation f). Almost monadic right-
associating do-notation, for a Set-based almost monad, (T, y, 1), is
inductively defined by the following two clauses, for any element
x € X and any computation f € TX, with x any variable potentially

®Indeed, only right-associative do-notation is implemented in functional programming
languages, e.g. Haskell. The rationale is that only lawful monads may be considered.

bound in the do-notation expression p.

rDo T
return x
rDo T
Do T
- f (Ax. )T (f)
p ...

Definition 9.11 (Left do-notation %Y). Almost monadic left associ-
ating do-notation, for an almost monad T: Set — Set, is inductively
defined by strengthening the induction hypothesis accumulating
an expression a and a variable x,

n(x);

~
accDo t x a rbo t
return y = X <o a
return y
accbDo t (y . x)
accDo t x a (rbo t
y <= f = x < a
- y<*f‘
L return (y . x))
return y

and finally evaluating on an empty accumulated expression.

accbo m '()
1Do t (rDo m
.. return '())

In other words, we left-fold the statements.

Example 9.12 (Monty Hall problem, f). As we saw in the intro-
duction, the Monty Hall problem has two solutions, depending
on associativity. Consider the following left-associated program:
each of the non-zero numbered lines corresponds exactly to each
computation step we took in the Introduction (Section 1).

o| 1Do Norm

1 car <- (uniform 'left 'middle 'right)
2 opened <- (host car 'middle)

3 '() <- (observe opened 'left)

4 return car

Left-associating do-notation gives the usual answer to the Monty
Hall problem: that changing doors is twice as likely to get the prize.
Evaluating the previous expression, we obtain 1/3|L) + 2/3|R) .
Expanding the program according to Definition 9.11 yields the
following nested program.

rbDo Norm
'(opened car) <- (rDo Norm
'(opened car) <- (rDo Norm
'(opened car) <- (rDo Norm
'(car) <- (rDo Norm
o) <- (rDo Norm
return '())
'(car) <- (uniform 'left 'middle 'right)
return '(car))
opened <- (host car 'middle)
return '(opened car))
(observe opened 'left)
return '(opened car))
return '(opened car))
return car




Because of the failure of associativity, this is different from the
program we would obtain just by reading the original Monty Hall
problem in a right-associative fashion. Instead, right-associating
do-notation answers that we are equally likely to win on any of the
two doors: 1/2|L) + 1/2|R).

rbo Norm
car <- (uniform 'left 'middle 'right)
opened <- (host car 'middle)
'() <- (observe opened 'left)
return car

The reader will notice that, conversely, we could simulate this right-
associating do-notation block in terms of nested left-associating
do-notation.

1Do Norm
car <- (uniform 'left 'middle 'right)
opened <- (1Do Norm
opened <- (host car 'middle)
'() <- (observe opened 'left)
return opened)
return car

Example 9.13 (Smoking causes cancer, ). Let us take a classical
example from Pearl’s work on causality. The following (unrealistic)
observational data could perhaps suggest that smoking has an
innocuous or protective effect on cancer.

SURVEY no-cancer | cancer
smoker tar 323 57
smoker no-tar 18 2
nonsmoker tar 1 19
nonsmoker no-tar 38 342

To actually quantify the effect of smoking on cancer, in principle,
we would need data extracted from an interventional study forcing
patients to smoke — which, previsibly, we want to avoid. That is,
we would need to compute the left-hand side of the concluding
equation of Proposition 9.8. Instead, by Proposition 9.8, we may
compute the right-hand side, which gets translated as follows.

1Do Norm

z <- (1Do Norm
(list xi z yi) <- p
'() <- (observe xqgq xi)
return z)

x <- (1lDo Norm
(list x zi yi) <- p
return x)

y <= (1Do Norm
(list xi zi y) <-p
'() <- (observe x xi)
‘() <- (observe z zi)
return y)

return y

=

Using only survey data, we compute that — even with unrealistic ob-
servational data — the incidence of cancer for a smoker (219/400 |C)+
181/400 [NC)) is larger than that for a non-smoker (201/400 |C) +

199/400 [NC)). We shall conclude that smoking causes cancer.

From this perspective, causal inference is the resolution of equa-
tions in discrete Markov magmoids. Alternatively to most prob-
abilistic programming literature, we do not use a normalization
operator, but the ability to modulate associativity of a Markov mag-
moid.

Elena Di Lavore, Mario Roméan, and Mark Széles

10 Conclusions

Normalization has been under-explored in categorical probability
theory and denotational probabilistic semantics; most inference
semantics either ignore normalization — preferring substochastic
kernels or unnormalized kernels instead — or treat it as an ad-hoc
operator, a feature of the semantics.

As a result, most semantic universes for probabilistic program-
ming are not normalized by construction. We have introduced the
Markov magmoid of normalized stochastic kernels as a first ex-
ample of normalized by construction denotational semantics for
probabilistic inference.

Our proposed explanation for this gap is that normalization
arises from a failure of associativity, and failures of associativity
are counterintuitive. For instance, we could naively say that, to
solve an inference problem, one must (1) set up a prior distribution,
(2) compute a stochastic kernel, and (3) update the prior with the
observation. This description misses an essential point: how to
associate these instructions or, in other words, when to normalize.
Any normalized probablistic semantics needs to clearly address this
point, and a revision of existing categorical probabilitic semantics to
understand their potential non-associative behaviour is warranted.

While non-associativity could seem too high of a price to pay,
being explicit about associativity has conceptual advantages: it
makes it possible to derive multiple properties of normalization
from a few axioms — rendering the continuous case much simpler
than it would be otherwise — and it allows us to distinguish between
observations and interventions as two different parenthesizations
of the same expression.

We abstracted this algebra by introducing sesquilaws: almost-
distributive laws that are multiplicative only up to idempotent. That
normalization is not a distributive law may be folklore, but it seems
absent from the literature. We went one step further and classified
this particular failure of normalization.

Monoidal sesquilaws induce commutative magmoids, another
newly introduced notion refining the non-associative case. For
commutative magmoids, we provided both a graphical calculus
and a programming notation. Remarkably, these seem to mostly
coincide — although not exactly — with the existing string diagram-
matic calculi for normalization over partial Markov categories [ ,

, ]; we ground these axiomatizations in formal category
theory via sesquilaws and commutative magmoids.

Finally, we proposed a different approach to categorical causal-
ity: we saw how solving causality problems corresponds to solving
equations on a discrete Markov magmoid. While Pearl’s do-calculus,
more than a synthetic axiomatization, is a collection of rules on top
of probabilistic reasoning, we propose an algebraic presentation
of the rules needed to discuss causality problems. Further work
on automating these solutions — e.g. via rewriting, showing com-
pleteness for identifiability — is warranted and not covered by this
manuscript; it is a promising avenue for a categorical semantics of
causality and causal programming.

More generally, we reassert — as weak distributive laws, duploids,
or mass-chance interpretations do — that failing distributive laws
contain, in many cases, mathematical structure worth studying on
its own.
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A Proofs for Section 1 (Introduction)

Definition A.1 (Extension). Given two monads, (S, 1%, 1) and
(T, 1", n"), an S-extension of the T-algebra (A, a) is a T-algebra
(SA, &) such that a § 3 = T(n3) § a*.

Tr]s
TA —— TSA
|
’75
A—— SA
Remark A.2. A convex algebrais an algebra for the finitely-supported
distribution monad (D). A one-point extension of a convex algebra

(A, @), in the sense of Sokolova and Woracek [ ] is precisely
an M-extension, an extension over the maybe monad.

Theorem A.3 (Black-hole is unique [
black-hole one-point extension, defined by

a2t A =0
R N TR e

is the only functorial one-point extension of convex algebras.

, Theorem 5.3]). The

It is well-known that a distributive law ¢/: TS — ST of amonad S
over another monad T gives a lifting of the monad S to the category
of algebras of T [ ]. The lifted monad acts on algebras by
extending them.

Proposition A.4 (Extensions from distributive laws). Any dis-
tributive law, y: TS — ST, determines a functorial S-extension of
T-algebras.

Proor. Given a distributive law, /: TS — ST and a T-algebra
(A, @), consider the morphism a* = ¢4 § S(«). The lifted monad, S,
following Beck’s work [ ], acts on objects (A, a) by S(Aa) =
(8(A), ).

Let us check that (SA, a¥) is an S-extension of (A, a). We use (i)
Beck’s construction, (ii) S-unitality of the distributive law, and (iii)
naturality.

TSy e LT(nSY e trn o s .8
(’7A) s = T(UA) $UasS(a) = Nra9 S(a) = a3 Na
This concludes the proof. O
Corollary 1.1 (from [ , Theorem 5.3]). Black-hole seman-

tics (Proposition 3.5) determines the only distributive law between the
distribution monad and the maybe monad, DM — MD.

Proor. We combine Sokolova and Woracek’s result (Proposi-
tion A.3) with the previous Proposition A.4. o

B Proofs for Section 2 (Normalization)

Definition B.1 (Finitary distribution monad). The finitary dis-
tribution monad, D: Set — Set, assigns, to each set, the set of
finitely-supported distributions on it,

D(X) = {d: X = [0,1]

#|supp(d)| < oo, Z d(x) = 1}.

xeX
Definition B.2 (Maybe monad). The maybe monad (sometimes
called the option monad), M: Set — Set, assigns to each set X, the
same set with an extra disjoint element usually denoted by L € MX.
That is, MX = X + {L}.

Definition B.3 (Monoidal natural transformation). A monoidal
natural transformation between two lax monoidal functors,

(F,uf, o) (A, ®4 L) — (B, ®p, I) and
(G.u%0%): (A ®a1a) = (B, @y Ip),
is a natural transformation between the underlying functors, ax : FX
GX, additionally making the following diagrams commute.

F G
FX®, FY = F(X®,Y) I, 24— G,

aX@baY\l/ \l/axqaay UF\L %

GX®GY 23 G(X®,Y)  Fl,

Proposition 2.5 (Non-associative category of normalized ker-
nels). Normalized kernels between sets, X — MDY, form a non-
associative category, Norm, where composition of two morphisms,
f: X —> MDY and g: Y — MDZ, is defined by

Ny Yoey f(x30) - g(v;2)
(f 9 g) (x, Z) - . . .
ZUEY ZWEZ f(xs U) . g(U, W)
In other words, if we consider the associated substochastic kernels,
f*: X - DMY and g*: Y — DMZ, it is the normalization of their
composition as subdistributions, f g =n(f*;g°").

Proor. We define id(x;x") = [x = x’]. Let us check that it is

right unital. Let f: X — MDY be a normalized kernel.
, 2y fsy) -1y =y]
(f 3id) (xy) = [ ) = }
2y fxy) - [y =yl
fxy) ]

= = f(xy).
[zy Fom ] T
On the last step, either 3.,/ f(x;y’) = 0, which implies f(x;y) =0,
or 3}, f(x;y") = 1, which simplifies the division. Left unitality is
analogous. O

Proposition 2.6. Normalized kernels are not associative.

ProOF. Let us provide a specific counterexample. Consider a
coin flip, f = 1/2|a) + 1/2|b), followed by a channel marking
it with different failure probabilities g(a) = 1/3 |x) + 2/3 |z) and
g(b) =1/2|y) + 1/2|z), and then followed by a channel that fails,
h(x) = |x) and h(y) = |y), but h(z) = 0.

In this case, let us check that (f§¢g) sh # f ¢ (g§h). We have
the following computation for the left-hand side,

1/2)a) + 1/2b)

1/6 |x) +2/6tzy + 1/4|y) + LfAtzy

2/5|x) +3/51y),

while the right-hand side composition amounts to (g § h)(a) =1 |x)
and (g § h)(b) =1ly), and thus the result is 1/2 |x) + 1/2 |y).

1/2la) +1/21b),

1/2(1/3 |x) + 2/342)) + 1/2(1/2|y) + 1/242))
S1/20x) +1/2 %)

{egad=

~
9
~>

This contradicts associativity. O

Proposition 2.9. Normalized kernels form a symmetric monoidal
non-associative category with the cartesian product, where the tensor
of i: X1 = Yy and fo: Xo — Y, is given by

(fi ® f2) (x1, x23y1, y2) = filxi;y1) - fa(x2592)-



PrROOF. Most of the structure is direct. The interchange law
corresponds to the following equation,

[ Dy il yn) - folx2sy2) - 91(ys21) - 92 (y2s 22) ] B
Sunmenn AGEY) - flxy2) - 1(y1321) - g2 (yasz2) |
2y il y1)-91(y1s 21) 2y, L (x23Y2) 92 (y2; 22)
|:Zy1,zl fl(xl;yl)'gl(yl;zl)].[Zyz,zg fa(x2;92) g2 (x2; 22)

which uses distributivity of products over sums. O

C Proofs for Section 3 (Distributive Laws)

Definition C.1 (Distributive law [ ], i21). A distributive law
between two monads, (S, g, v) and (T, p, v), on the same category
is a natural transformation ¢x : TSX — STX that moreover makes
the following diagrams commute.

T T S T T S T S S T S S
S T S T S T S T
N S T T
S T S T S T S T

Definition C.2 (Monoidal monad). A monoidal monad, given by a
tuple (T, u, n,u,v), on a strict monoidal category (C, ®,I) consists
of a monad (T, i, ), whose underlying functor is lax monoidal:
there exist structural natural transformations,

uxy: TX®TY > T(X®Y) and v: [ =TI,
satisfying associativity, (ux,y ®idz) suxey.z = (idx ®uy z)ux.yez,
and unitality, (id7x ® v) § u = idrx and (v ® idrx) §u = idrx.
id
TX®TY ®TZ X2 1X o T(Y ® 2)
uxy ®idel lux, Yoz
UxXeyY,z
TXQY)®TZ —=> T(X®Y®Z)

id®v

TX —— TXQ®TI

\l/v@id l/ux,l
urx
TITX ——— TX
Moreover, the unit and multiplication of the monad are monoi-

dal natural transformations, meaning that the following diagrams
commute.

XY XX 7(XeY) s T 12Tl

w0 W4

TX®TY I I I8 TTI

TTX®TTY 225 TX @ TY —“ 3 T(X®Y)

T(TX®TY) —“ TT(X ® Y)
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Definition C.3 (Monoidal distributive law). A monoidal distribu-
tive law between monoidal monads, (S, 4, n,u,v) and (T, yu, n,u, ),
is a distributive law, ¢x: TSX — STX, whose transformation is
monoidal

T
TSX ® TSY =¥ T(SX ® SY) —=% TS(X ® Y)

Ux ®l//yl l/¢X®Y

STX @ STY =53 S(TX ® TY) X% sT(X @ Y)

I —2 5 sT -2 STI

| o

I 1% §T1

D Proofs for Section 4 (Sesquilaws)

Proposition 4.3. Almost-distributive laws, Yix : TSX — STX, in-
duce non-associative monads on their composite functors, ST. Monoi-
dal almost distributive laws induce monoidal non-associative monads
on their composite functors.

ProoF. The unit of the composite non-associative monad is
n = n°nT; the multiplication is u = SYT ; p*uT. From unitality of
the almost distributive law, unitality of the non-associative monad
follows.

Whenever the almost distributive law is moreover monoidal,
the unit and multiplication of the monad become monoidal by
construction. O

Proposition 4.4 (Kleisli magmoids). Any non-associative monad,
(R, R, n®) over a category C, induces a magmoid, (C,K(R)). Any
monoidal non-associative monad induces a monoidal magmoid.

Proor. Let us first construct a non-associative category, K(R):
the construction is similar to that of the Kleisli category; the only
difference is that associativity is never used. Its objects are those
of C, the base category; its morphisms from X to Y correspond to
morphisms X — RY of the base category.

Composition of two morphisms, f: X — RY andg: Y — RZ,
uses the multiplication px : RRX — RX. It is defined, in terms of
the base category, by f §g = f; Rg; iiz. Identities are defined, in
terms of the base category, by »%. From the unitality axioms of the
almost distributive law, it follows that composition is unital with
identities.

Let us know construct the identity-on-objects functor (=) : C —
K(R). It acts as (f); = f'$ R, and it is again direct to check first
that it defines a functor, and then, by cases, that the image of this
functor is associative. O

Proposition 4.5. Normalization, nx: DMX — MDX, forms an
almost-distributive law.

Proor. Let us check the axioms of an almost-distributive law.
The proof is parallel to that of the discrete case.

DM Y
DMMX ———> DMX —— MDX

| o

M
MDMX —V/) MMDX
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7MD M
DX —— MDX MX —— MDX

on] /w ] /¢
DMX DMX

For M-multiplicativity, we start by noticing that an element
d € DMMX means a distribution over X +{L}+{L’}. Let us reason
by cases. If d(1) + d(L1’) = 1, then n(zM(d)) = L = pM(n(n(d))),
either because d(L’) = 1, or because d(L’) # 1 but then d(L) > 0
and n(d)(L) = 1. Assume, thus, that d(L) + d(L’) # 1. We then
need to prove that normalizing both separately is the same as
normalizing after identifying both.

) EELICHCIN
M(n(n(d)))(x) Tex n(d)(xl)]

[ d(x)
Zxpex+{1} d(x2)

d(x1)
L leeX [ xzex+{1} d(x3)

d(x)

= | =—~ | =n(M(d)).
- leexdm)] D)

For M-unitality, we must check that the normalization of a nor-
malized distribution is itself: by n™(d)(x) = d(x), we conclude that
Yrex 1M(d)(x) = Lyex d(x) = 1, and thus n(y"(d)) = n"(d).

For D-unitality, we reason by cases on MX. We directly check
that n(7° (1)) = n(]L)) = L and n(5°(x)) = n(|]x)) = x. O

Definition D.1 (Sesquilaw, i2i). A sesquilaw, (S, T, %, ¥X), between
two monads, consists of a distributive law () : ST — TS and an al-
most distributive law ()X): TS — ST, forming a section-retraction
pair, () § ()X) = id, and satisfying any of the following two equiv-
alent equations.

T s T
T s T T S T
T S T
s T i j
s T s T
s T
A sesquilaw is monoidal whenever its transformation is.

Theorem 4.7. Normalization and subdistributions form a sesquilaw.

Proor. We already know that normalization and the inclusion
into subdistributions are mutual inverses, and that normalization
forms an almost distributive law (Proposition 4.5).

Let us prove that the second formulation of the axiom of dis-
tributive sesquilaws holds.

nD My
DMDX —— MDDX —— MDX

] e

DDMX —Ls DMX

Let d € DMDX be, equivalently, a subdistribution of distribu-
tions. We must prove that normalizing and flattening the distribu-
tions is the same as, while regarding the distributions as subdistri-
butions, flattening and then normalizing. In other words, we seek
to prove

Mu(n(d)) = n(u°(d(=*))).

On the left hand side, we use the monad multiplication and norma-
lization.

Mp(n(d))(x) = Z n(d)(a) - a(x)

aeDX
B [ d(a) .
= 2| TpeoxdB)

On the right hand side, we use the normalization and monad multi-
plication.

n(u(d(=*)))(x)

a(x).

[ p(d(=*)(x) ]

| Zyex #(d(=*))(y)

_ [ Yaenx d(a®) - a(x) ]
| Zyex Zaenx d(a®) - a(y)

[ Saeoxd(@) - a(x) ]
| Zaenx d(a®) - 2yex a(y)

— [ Xaenx d(a) - a(x)] )

Yaenx d(a®)
The last step uses that all @ € DX are full distributions: 3. cx a(y)
must be exactly 1. This concludes the proof. O

Theorem 4.8 (Renormalization). Any sesquilaw, (S, T, m,n), in-
duces an idempotent, k = (n § m): TS — TS. This idempotent is
left-absorptive, meaning the following diagram commutes.

TS
TSTSX -3 TSX —K3 Tsx

kTSl /
Ts k

TSTSX +— TSX
Proor. We employ string diagrams for this proof. We need to
prove that any sesquilaw, (%)X, S, T), induces an idempotent, (3X§
%) : TS — TS, and that this idempotent is left-absorptive, meaning
that the following equation holds.

T S T S
T S T S
T S
T S

Let us prove a slightly stronger equation where we omit compo-
sition with the distributive law (). We use (i) the multiplicativity
axiom, (ii) the sesquilaw equation, (iii) that sesquilaws are inverses,
(iv) the sesquilaw equation, (v) the multiplicativity axiom. This
concludes the proof. O

Lemma 4.11. Any sesquilaw, (S, T, m, n), induces a right action of
the monad TS into the non-associative monad ST: a natural trans-
formation, ux : STTSX — STX, making the following two diagrams
commute.

§Ts STuTS
STX —— STTSX STTSTSX —— STTSX

ko

STX STTSX —%— STX



(@) (i)

(@) ® @)

(vii) (vii)

S
‘%@@

Figure 2: Multiplicativity for the right action of a sesquilaw.

@ § (i)

5

Figure 3: Unitality for the right action of a sesquilaw.

P
%J ;

(i)

Figure 1: Proof of the renormalization equation.
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This action is defined by either side of the following commutative
diagram.

suTs ms
STTSX — STSX ——— TSSX

s I

TmS

TSTSX —— TTSSX —) TSX —*— STX

ProoF. Let us use string diagrams for this proof. We will show
that any sesquilaw, (&, XX, S, T), induces an action of the monad TS
into the almost monad ST. We define the action, u: STTS — ST, by
string diagrams, as any of the two following equivalent definitions.

0

We reason by string diagrams (in Figure 2). We use (i) the multi-
plicativity axiom, (ii) that sesquilaws are inverses, (iii) the sesquilaw
equation, (iv) the multiplicativity axiom, (v) the multiplicativity of
the distributive law, (vi,viii) associativity of the monad, and (vii)
the multiplicativity of the distributive law.

The proof of unitality is more direct (Figure 3): it uses (i,ii) uni-
tality of both monads and (iii) that sesquilaws are inverses.

With these two axioms, we have built an action. In the monoidal
case, we repeat the exact same proof just considering that all natural
transformations are monoidal natural transformations. O

Theorem 4.12. In the setting of a sesquilaw, (S, T, m, n), the Kleisli
category of the distributive law, K(m), acts on the Kleisli magmoid
of the almost distributive law, K(n).

Proor. We define the action, (<): K(n)(X;Y) X K(m)(Y;Z) —
K(n)(X;Z),as p<f =p;STf;uz, with the natural transformation
ux: STTSX — STX defined as in Lemma 4.11. Multiplicativity and
unitality follow from Lemma 4.11. O

Corollary 4.13. Normalized kernels admit an action from sub-
stochastic kernels, defined by p < f =n(p®; f).

(<): Norm(X;Y) X subStoch(Y;Z) — Norm(X;Z).
That is, satisfyingp<id =p andp<(f;g9) =p<f<g.
Proor. The result follows from Proposition 4.9.
p(f39)=n(p;f39) =n(n(p®;f);9)
n(p*sf)<g=p<fey.
By section-retraction, n(p® ; id) = n(p®) = p. O

E Proofs for Section 5 (Possibilistic
normalization)

Proposition 5.3. Post-selection is a monoidal sesquilaw.

PROOF. A better description of post-selection start by regarding
non-empty subsets, the elements of RX, as non-null predicates on X:
predicates that are true on at least one element. We take this point
of view for this proof, as we shall see it simplifies it considerably.”
7Altematively, the reader familiar with tricocycloids may prefer to regard this as a
consequence of Theorem J.1: tricocycloid homomorphisms also induce sesquilaw

homomorphisms; and, in this case, the possibilistic tricocycloid is the terminal one.
We choose not to develop this theory here.
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Post-selection of a predicate, a: X — {0,1} or ¢ € RMX, is
defined by a(x) except when it is null,

a(x)
\/xEX (x(x)

From here on, we repeat proofs analogous to those of the prob-
abilistic case. For instance, let us check that post-selection is a

monoidal natural transformation. It suffices to note that the follow-
ing formula holds.

[ a(x) ] /\[ B(x) ] [ a(x) A B(x)

Vyex a(x) Viex f(x) Viex a(x) AViex B(x) |
Let us also check the sesquilaw axiom. It is well-known that

there exists a distributive law of the maybe monad over any other

Set-monad. Let y € RMRX be, equivalently, a predicate on non-null

predicates. On the lower path, we use the monad multiplication

and normalization.

Mpu(p(¥)) (x)

p(a) =

\/ p)(@) rax)

a€RX
_ [ y(a)
N )

On the right hand side, we use the normalization and monad multi-
plication.

A a(x).

p(u( (=) (x)

(=) () ]
LV yex p(¥(=*)(y)
Vaenx ¥(a®) A a(x)

Vyex Vaerx ¥(a®) A a(y)
_ Vaenx ¥(a®) A a(x) }
- | Vaepx ¥(a®) A Vyex ¥(y)
_ [Vaenx ¥(a®) A a(x) ]

Vaenx ¥(a®) .

The last step uses that all & € RX are non-null predicates: \/ yex a(y)
must be exactly 1. The rest of the proof is analogous. O

Proposition 5.6. Support, suppx : DX — RX, is a sesquilaw ho-
momorphism between normalization and post-selection.

Proor. We must prove that the following two diagrams com-
mute.

M M.

MDX —2% MRX MD —2% MR
'l)\l/ \l/.R ODT TOR
suppM suppM
DMX P25 RMX DM 2% rM

The first diagram is direct. Let us discuss the second one. On the
left-hand side, we have

supp(n(d))(x) = (n(d) > 0)

(5] )
Zx’ d(x/)
=(d(x) >0).
Meanwhile, on the right-hand side, we get to the same result.
supp(d) (x)
p(supp(d)) (x) = pp—]
Varex supp(x’)

(d(x) > 0) ]
Viex(d(x') > 0)

= (d(x') > 0).

This concludes the proof. O

F Proofs for Section 6 (Left and right
commutativivity)

Definition F.1 (Tensor schema, [ , Definition 1.4]). A tensor
schema D — also known as a polyquiver or polygraph — consists of
a set of objects, D,p;, and, for each two lists of objects, X1, ..., X, €
Dopjand Yy, ..., Yin € Dypj, a set of morphisms

,(D(Xl, ..‘,Xn; Yl, vaey Ym)

Theorem F.2 (String diagrams, [/591, Definition 1.2]). String dia-
grams over a tensor schema D — deformation classes of boxed pro-
gressive plane diagrams, in the original [ /591, Definition 1.2] — form
a strict monoidal category, String(D); moreover, this is the free strict
monoidal category over a tensor schema.

As a consequence, there is an adjunction between tensor schemas
and strict monoidal categories,

TensorSch(D, Forget(C)) = MonCat(String(D), C);

which, in turn, induces a monad, S = Forget § String, in the category
of tensor schemas.

Remark F.3. String diagrams form a monad on the category of
polyquivers, S: PolyQuiver — PolyQuiver, and its category of al-
gebras is precisely the category of strict monoidal categories and
strict functors [/591, Theorem 2.3].

Theorem 6.7. Left commutative magmoids are non-multiplicative
algebras of the string diagrams monad over tensor schemas, in the
sense of Joyal and Street [ 7591, Definition 1.4].

Moreover, these algebras satisfy the following equations for any
two diagrams o and f: we call them (i) left-bias, and (ii) monoidality.

@l , | @D
D @D

(i)
CBIIEDINIECDEED,

Proor. We start by constructing, for each commutative mag-
moid, A, an algebra ¢: S(A) — A. Given any string diagram,
s € S(A), we may use that it is acyclic — progressive in the original
[1591, §2] — to deduce the existence of a topological ordering of its
nodes, [fi, ..., fu]-

Let us fix a representative string diagram, up to deformation,
where the nodes appear progressively in the given topological order
(this we obtain from Joyal and Street’s theorem, and contains the
core of the proof [/591, §2]). For each node f; in the representative
string diagram, define ¢(f;) = id® ... ® f; ® ... ® id, to be the
given morphism tensored with as many identities as wires it has
on each side. Note that this is not well-defined under the choice of
topological ordering, we will need to show our final interpretation
of the whole diagram is.



Now, define the interpretation of the string diagram as the left-
associated composition of node interpretations,

o(s) = (((() §6(f2)) 59(f3)) 5 ) 5 $(fa)-

We must show that this is well-defined under the choice of topo-
logical ordering. Any two topological orderings can be reached
from each other by swapping two independent adjacent nodes: f;
and f;41 for some index i. Let us call § to the string diagram after
swapping these two nodes. We have that,

@(s) = (((((¢(f1) 5¢(f2)) 5-) § 6 (f)) § 4(£)))-) § D (fu);
e(®) = (((((¢(f1) §8(f2)) 5 ) 5 ¢(7)) 5 6 (fi))--.) 5 ¢ (f)-

Here, however, we may use the axiom of commutative magmoids to
prove that both terms are indeed equal. Explicitly, if two nodes — i
and j —were independent in the original graph, then ¢(f;) and
#(f;) interchange by the axioms of monoidal magmoids.

We may now check that the algebra is unital: if s is a string
diagram consisting of a single node f, we have that ¢(s¢) = f, by
definition.

Finally, let us prove the three equations of the statement. Let
a, B,y € S(D) be three string diagrams. Let [ fi, ..., f»] and [g1, ..., gm]
be two orderings of the nodes of @ and . We have

(1) ¢([p(a@)]) = ¢(a), by unitality;

@) e(le(@]8[p(P)]) = (¢(a)id)5(id2e(f)) = p()®¢(f),
using that, because the nodes in « and f are independent,
we may pick a topological ordering that places all nodes in
a before all nodes in f; from that topological ordering, we
have by induction applying the interchange law,

(((P(f1)56(f2) §9(f5)) 5 ) § ¢(gm) =

(((p(@) 5 9(91)) §4(92)) § ) § $(gm) =

(((9(91) §9(92)) 5 ---) 5 $(gm)) § $(@) =
$(B) 3 ¢(a).

) e(le(@)]55) = ((¢(2) §91) § ...) § gm, using that, because
all nodes in « appear before nodes in f3, a topological order-

ing can be constructed from the topological ordering in «
followed by the topological ordering in S.

These close the proof. O

Remark F.4 (Non-multiplicative algebras of string diagrams). Mo-
noidal magmoids are not algebras for this string diagrams mo-
nad, but there are two canonical algebra structures on any mo-
noidal magmoid: right-associative and left-associative evaluation,
evgr: S(A) — A andevy: S(A) — A. Both of these evaluations sat-
isfy the unitality axiom of algebras, but both fail the multiplicativity
axiom.

A —3 S(A) s(s(a)) 2L 5(a)

\ i [

S(A) —== 5 A

As a result, a string diagram composed of string diagrams has a
different semantics from its flattening.

Remark F.5 (Normalization boxes). This explains the emergence
of normalization boxes [ , ]. Considering elements of the

monad of string diagrams, S(A), is insufficient to modulate the
non-associativity of normalization. Instead, authors use boxes that
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themselves contain diagrams with boxes; that is, elements of the
free monad

S*(A) = A +S(A) + S(S(A)) +....

G Proofs for Section 7 (Markov magmoids)

Proposition G.1 (Normalization copy-discard sesquilaw). Norma-
lized kernels form a copy-discard magmoid. Normalization induces a
copy-discard sesquilaw.

Proposition 7.5. Any copy-discard sesquilaw induces a quasito-
tal magmoid. As a corollary, normalized kernels are quasitotal: and,
exemplifying Remark 6.8, the following equation holds for any nor-
malized kernel f: X — MDY.

2y fOxy) - fxy)
Zy,y' f(x’y) 'f(X;y')

ProoF. More generally, let us prove that any morphism that
factors into a deterministic morphism followed by a total morphism
is quasitotal. Let f: X — Z be a morphism that factors as f =a§b
for a deterministic morphism a: X — Y and a total morphism
b:Y—> Z.

We reason that the morphism is quasitotal using (i) the factoriza-
tion, (ii) that b is total, (iii) that a is deterministic, (iv) the comonoid
axioms, and (v) the factorization.

= f(x;y).

I (i)lcllll?lm)lfllllil
e dle ] L]
[ |
[ a ] ’_I_‘a
(i) w | 1 | o]

[ b | _\_li_l_

Finally, we are left to prove that, in the Kleisli category of a
copy-discard sesquilaw, (T, S, n, m), every morphism factors into
a deterministic morphism followed by a total morphism. Indeed,
morphisms of the Kleisli category are of the form f: X — STY,
and they compose as f$g = f;STg;SnT; 5. Because the monad
S is relevant, any morphism of the form g ; Sy” is deterministic;
because the monad T is affine, any morphism of the form & ; ° is
total. It suffices to note that f = (£ ; SyT) § ° by unitality of the
sesquilaw. O

Lemma G.2. Any copy-discard sesquilaw, (S, T, m,n), induces a
quasitotal magmoid that satisfies associativity, f §(gsh) = (f$g)$h,
if either

(1) f=u;SyT for someu: X — SY;

(2) g=0;5nT forsomev: Y — SZ; or

(3) h=w;pST for somew: Z — TW.

Proor. We employ string diagrams. The two sides of the as-
sociativity equation can be regarded as natural transformations,
STSTST — ST; we equate these.

Let us consider the first case. On the left hand side, we use (i)
unitality of the almost distributive law, and (ii) unitality of the
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monad T. On the right hand side, we also use (iii) unitality of the
almost distributive law, and (iv) unitality of the monad T. Both
sides coincide by associativity of the monad S.

@

(i)

e
e

Let us consider the second case. We use (i) unitality of the monad
T, (ii) associativity of the monad S, (iii) multiplicativity of the almost
distributive law, and (iv) unitality of the almost distributive law.

(ii) (iii)

R
s
et

Let us consider the third case. We use (i) unitality of the almost
distributive law; (ii) unitality of the monad S; (iii) associativity
of the monad T; (iv) unitality of the monad T; (v) unitality of the
almost distributive law.

) (i)

=2
BT
o

We have thus shown associativity in any of the three cases. O
Lemma G.3. Normalized kernels form a left-relevant magmoid.

PRrooOF. Our proof strategy is to apply Lemma G.2: we will prove
that, in the normalization magmoid, deterministic morphisms are
precisely those of the form u § My®; while total morphisms are
precisely those of the form w § DpM.

By definition, a total morphism must satisty Y. ey f(x;y) = 1.

This means that there exists a stochastic kernel, u(x;y) = f(x;y),
such that f = u § MpP.

By definition, a deterministic channel must satisfy f(x;y) =
f(x;y) - f(x;y), meaning that, either f(x;y) =0 or f(x;y) =1.In
particular, because probabilities must sum to less or equal than 1, for
each x, there must exists at most a single y, such that f(x;y,) = 1.
This means there exists a partial function, defined by v(x) = yx
whenever y, exists and undefined otherwise, such that f = wsDgpM.

Applying Lemma G.2, we conclude that normalized kernels form
a left-relevant magmoid. O

Theorem 7.9. Normalized kernels form a Markov magmoid.

Proor. We separately prove that normalized kernels form a
quasitotal magmoid (Proposition 7.5) and that it is a left-relevant
magmoid (Lemma G.3). We only need to show it admits conditionals.

By definition, a conditional must satisfy

2zez f(x59.21) - ¢(x, 45 2)
flxy.2) = : :
Zzl,zeZ f(x’ Y, Zl) : c(x, Y; Z)
Let us define the following normalized kernel,
f(xy,2) ]
c(x,y,2) = [
T )
and let us proceed by cases: for each x and y, either
D feay2) =0,
zeZ

and then the axiom of conditionals vacously holds; or

D sz 0,

zeZ
and we may simplify both coefficients to prove the axiom of condi-
tionals. We have proven that c is a conditional of f.

An alternative proof that we do not develop here starts by re-
alizing that the category of substochastic kernels has quasitotal
conditionals [ ], and that, thanks to the sesquilaw, these are
inherited by the quasitotal magmoid of normalized kernels. O

H Proofs for Section 8 (Normalization in
standard Borel spaces)

Theorem 8.4. Normalization induces a monoidal sesquilaw.

ProoF. Let us first prove that normalization is monoidal. Con-
sider two measures, v; € DX and v, € DY. We use (i) the definition
of normalization and the tensor of measures, (ii) the definition of
the indicator function, (iii) linearity of the Lebesgue integral, (iv)
linearity of the Lebesgue integral, and (v) the definition of the tensor
of measures.

N1 ® v2)(U)
@ - Jyer (fxex §U(X,y)'V1(dx))-vz(dy)
ey (frox By - wi@0)) vty
o oy (frex @0 Gow) - vad) - vady)|
fyex (fiex 1-11(@) - va(ay)

(iii) -/er (/xex &u(xy) - Vl(dx)) - vo(dy) -
B v (X) - v (Y)




[ Lse [

) . [vZ<dy>]
v2(Y)
(N(v1) ® N(v2))(U).

Let us now prove that normalization determines an almost dis-
tributive law.

IS

7, M
DMMX 25 pMX —N s MDX

NM\L 4 ”

MDMX 2Ny MMDX

Mo Mp?
DX —— MDX MX —— MDX

o ’7Ml % noN {l %
DMX DMX
For M-multiplicativity, note that an element d € D MMX is a
measure over X +{L}+{L’}. Let us reason by cases. If d({L, L'}) =
1, then N(pM(d)) = L = p™(N(N(d))), either because d(L’) = 1,
or because d(L”) # 1 but thend(L) > 0 and N(d)(L) = 1. Assume,
thus, that d({L, L’}) # 1. We then need to prove that normalizing
both separately is the same as normalizing after identifying both.

N@o@)] | 7ot
M _ _ +{L
p (N(N(d)))(U)_[N(d)(X)]_ i
d(X+{L})
d(U)
[ d(X)] 2 (M (d)).

For M-unitality, we must check that the normalization of a
normalized distribution is itself: by " (d)(U) = d(U), we conclude
that n™(d)(X) = d(X) = 1, and thus N(*'(d)) = ™ (d). For D-
unitality, we reason by cases on MX. We check that N(3° (L)) =
N(]L)) = L and that N(5P(x)) = N(|x)) = x.

Let us now prove that normalization and subdistributions form
a sesquilaw.

We first need to prove that normalization and the inclusion into
subdistributions are a section-retraction pair. Given any normalized
distribution, v € M DX, the measure of the whole set must either
be zero or one, v(X) = 1 or v(X) = 0. If it is zero, it follows that
the measure of any subset, U C X, must also be zero, v(U) = 0; as
a consequence, in any of the two cases,

v(U)
N(w)(U) = [ =v(U).
X)
Let us prove that the second formulation of the axiom of dis-
tributive sesquilaws holds.

DMDX 25 moDx M5 MDX

Let v e DMDX be a subdistribution of distributions. We must
prove that normalizing and flattening the distributions is the same
as, while regarding the distributions as subdistributions, flattening
and then normalizing. In other words, we seek to prove

Mu(N(v)) = N(p(v(=*))).
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On the left hand side, we use (i) the definition of monad multiplica-
tion for the Giry monad, and (ii) the definition of normalization.

Mu(N(v(= )))(U)@/Dxa(U)N(V(—'))(dw)

(i) | v(da)
- /aera(U) [V(DX)]'

On the right hand side, we use (i) the definition of normalization, (ii)
the definition of monad multiplication for the Giry monad and, fi-
nally, (iii) that the @ € DX elements are full distributions, meaning

that a(X) = 1.
o | p(@O)
N @) 2| O
(i) [/aei)x a(U) - V(da)]
./an)X a(X) - v(da)

(i) e nx @(U) - v(da)
- W(DX)

Lastly, we may divide by cases: whether v(DX) =0 or v(DX) # 0,
we may use linearity of the integral to equate the two sides. O

Lemma H.1. BorelNorm is a left-relevant magmoid.

PRrRoOF. Our proof strategy is to apply Lemma G.2: we will prove
that, in BorelNorm, deterministic morphisms are precisely those
of the form u § Mn®; while total morphisms are precisely those of
the form w § DyM. Let us highlight that this is not automatic nor
does it follow from the discrete case: indeed, if we were to allow
normalized kernels between arbitrary measurable spaces, Lemma
G.2 would not apply: deterministic maps would not coincide with
measurable maps [ , Example 10.4].

Any normalized kernel between standard Borel spaces, f: X —

MDY, can be regarded as a stochastic kernel to the standard Borel
space MY. Any such deterministic kernel must satisfy, by definition,
that f(x;S)? = f(x;S). Thus, it must create measures yielding
either 0 or 1; that is, taking values in the set {0, 1}. In standard Borel
spaces, {0, 1}-valued measures correspond to delta measures [ ,
Example 10.5, Example 10.4]. Finally, a delta measure over MY is
either a delta measure over Y or a zero measure. In other words,
deterministic kernels correspond to partial measurable functions.

Any total kernel between standard Borel spaces, f: X — MDY,
must be such that f(x;Y) = 1; that is, it must yield a full measure.
This means that there exists a stochastic kernel, u(x; S) = f(u;S),
such that f = u § MpP.

Applying Lemma G.2, we conclude that normalized kernels be-
tween standard Borel spaces form a left-relevant magmoid. O

Theorem 8.7. BorelNorm is a Markov magmoid.

Proor. We separately prove that normalized kernels between
standard Borel spaces form a quasitotal magmoid (Proposition 7.5
and Theorem 8.4), and that they form a left-relevant magmoid
(Lemma H.1). We only need to show that it admits conditionals.

We will use that BorelSubstoch has quasitotal conditionals. This
is not a direct result, but has already been shown in the context of
partial Markov categories [ , Theorem 3.12].

Thanks to the sesquilaw, we know that there exists a faithful
functor (-)*: BorelNorm — BorelSubstoch. Quasitotal maps in
BorelSubstoch must satisfy f(x;Y)? = f(x;Y), and thus they must
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Figure 5: Back-door formula, second part of the proof.

yield normalized measures: in other words, they must be of the
form f = u® for some normalized channel u.

Finally, because BorelSubstoch admits quasitotal conditionals,
f° must have a conditional c that, being quasitotal, must be of the
form ¢ = v°®. Then, by faithfulness, we conclude that v must be a
conditional of f. O

I Proofs for Section 9 (Discrete Markov
magmoids)

Proposition 9.6 (Back-door adjustment formula). In a discrete

Markov magmoid, let a joint state, p: 1 — U @ X ® Y, admit the

following factorization into total morphisms where, moreover, f has

full support.

ProoF. Let us first simplify the uppermost part of the diagram
(Figure 4). We use (i) the factorization assumption, (ii) the left-bias
axiom of string diagrams for commutative magmoids, together
with associativity of the comultiplication, and (iii) the assumption

that the morphisms g and h are total, together with the comonoid
axioms.

w

| ® [}

Figure 4: Back-door formula, first part of the proof.

Let us simplify the second part of the diagram (Figure 5). We
now use (i) the factorization assumption, (ii) the left-bias axiom
of string diagrams for commutative magmoids, (iii) the Frobenius
equation, (iv) the left-bias axiom of string diagrams for commutative
magmoids, and (v) the assumption that f has full support.

Let us conclude the proof (Figure 6). We (i) substitute both simpli-
fications on the original statement, (ii) we apply the left-bias axiom

of string diagrams for commutative magmoids, (iii) we use that we
are in a left-relevant magmoid, and (iv) we apply the monoidality

axiom of string diagrams for commutative magmoids. O

Figure 6: Back-door formula, final part of the proof.

Proposition 9.8 (Front-door adjustment formula). In a discrete
Markov magmoid, let a joint state, p: 1 — X ® Z ® Y, admit the
following factorization into total morphisms where, moreover, both t
and (g §s) below have full support.




Figure 10: Proof of the synthetic front-door criterion.
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Then, the following equation holds.

In other words, an intervention on the variable X can be rewritten as
a composition, in the Markov magmoid, of the observational data.

PRroOF. Let us start by simplifying the left-hand side (Figure 7).
We use (i) simplification of an exact observation and full support
of s, and (ii) the comonoid axioms.

Figure 7: Front-door formula, first part of the proof.

Let us now simplify each one of the two factors. The first factor
simply evaluates part of the distribution (Figure 8). We use (i) the
axiom of left-relevant magmoids, after substitution, and (ii) the
comonoid axioms.

Figure 8: Front-door formula, second part of the proof.

The second factor computes the marginal of a conditional distri-
bution (Figure 9). We use (i) the left-bias axiom of string diagrams
for commutative magmoids, after substitution; (ii) totality of ¢ and
the comonoid axioms; and (iii) the simplification of an exact obser-
vation together with the full support assumption of (g § s).

Finally, let us address the main claim (Figure 10). We use (i,iv,vii)
the left-bias axiom of string diagrams for commutative magmoids,
after substitution; (ii) the existence of Bayesian inversions, from
conditionals (see any text on Markov categories, e.g. [ 1), to-
gether with the left-bias axiom of string diagrams for commutative
magmoids; (iii) the Frobenius equation; (iv) the left-bias axiom of
string diagrams for commutative magmoids; (v) the full support
assumption of (g § s); (vi) the Frobenius equation, together with as-

sociativity of the comultiplication; (viii) the full support assumption
on t; (ix) the axiom of left-relevant magmoids; and (x) the definition

of Bayesian inversions. O
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J Proofs for Section 10 (Conclusions)

Theorem J.1 (Tricocycloid to sesquilaw). Every Set-based tricocy-
cloid induces a Set-based sesquilaw.

PRrROOF SKETCH. Let us first recall that every tricocycloid, H,
induces a linear exponential monad T, satisfying T(X +Y) =
TX+HXTXXTY +TY.

From this property, let us construct a distributive law and an
almost distributive law. The first is the distributive law over the
Maybe monad, described by inclusion

(9)*:TX+1>TX+HXTX +1;
and the second uses projections to extract an element of the monad
from the first and the second summand,
(5):TX+HXTX+1—>TX+1.

Additionally, note that we could construct another distributive law
that sends the second summad to the failure element,

(=) " TX+HXTX+1->TX+1;

this would yield a black-hole semantics.

It remains to show that these induce a sesquilaw. Let us write
X®Y =X+HXXXY +Y and let us check that the axiom for
sesquilaws holds.

TTX ®1 —— TTX +1 255 TX +1
| s
TTX®T(HXTX)®1 — TX ® 1
This diagram can be split by an arrow, y® 1: TTX®1 > TX ® 1,

the upper quadrangle then commutes because of naturality; the left
triangle can be checked to commute by cases on the coproduct. O

K Complete Racket implementation

The Racket v9.0 code is also available as an anonymized repository

[ .

DISTRIBUTIONS.RKT
#
( /struct)
( sesquilaw/left-do)
( (pair x y) (list x y))
( (validity xs)

(apply + (map second xs)))

( / (dist-map f xs)
L (F ")) null 1]
[ (f (cons (list x v) ys))
(cons (list (f x) v) (dist-map f ys)) 1)

( / (dist-map-values f xs)
L "0O) null ]
[ (f (cons (list x v) ys))
(cons (list x (f v)) (dist-map-values f ys)) 1)

( / (remove-zeroes Xxs)

L CO) null ]
[ ((cons (list x @) ys)) (remove-zeroes ys) ]
[ ((cons (list x v) ys))

(cons (list x v) (remove-zeroes ys)) 1)

( / (weight-of-point x xs)
[ (x'O) o]
[ (x (cons (list x v) ys))
(+ v (weight-of-point x ys)) 1
[ (x (cons (list y v) ys))
(weight-of-point x ys) 1)

( / (dist-remove x xs)
L& "0O) "0l
[ (x (cons (list x v) xs)) (dist-remove x xs) ]
[ (x (cons (list y v) xs))
(cons (list y v) (dist-remove x xs)) 1)

( /
[CrO) "0O1
[ ((cons (list x v) ys))

(reweight xs)

(let ([w (+ v (weight-of-point x ys))1)

(cons (list x w) (reweight (dist-remove x ys)))) 1)
( (condense xs) (reweight (remove-zeroes xs)))
( / (rescale xss)

[ ((list xs v))
(dist-map-values (lambda (x) (* v x)) xs) 1)

( (dist-join xss)
(condense (apply append (map rescale xss))))

( (dist-normalize xs)
(condense
(dist-map-values
(lambda (v) (/ v (validity xs))) xs)))

( (dist-bind xs f)
(dist-join (dist-map f xs)))

( (dist-return x)
(list (pair x #el)))

( (dist-uniform 1s)
(map (lambda (x) (pair x (/ #el (length 1s)))) 1s))

( dist-void
(list))

( distribution
( O
[(_ Ixvlp ...)
(cons (pair x v) (distribution p ...))]
[0 (1ist)D))

( uniform

( O
[(_ x ...) (dist-uniform (list x ...))1))

(provide
dist-bind dist-return dist-uniform dist-void
dist-normalize distribution uniform pair)

NORM.RKT

M won -




® < o o

® N > R w N =

;5 inheriting the return from distributions and using a
;; modified bind that renormalizes. We also implement
;; an observe statement.

(require sesquilaw/left-do)
(require sesquilaw/distributions)

(define norm-return
dist-return)

(define (norm-bind xs f)
(dist-normalize (dist-bind xs f)))

(define Norm
(monad norm-return norm-bind))

(define (observe x y)
(if (equal? x y)
(uniform "))
(uniform)))

(provide Norm norm-return norm-bind observe)

RIGHT-DO.RKT

#lang racket

DO-NOTATION.

;3 This file implements do-notation for magmoids:
;; right-associating do-notation (the usual one in
;; Haskell) and left-associating do-notation (which is
novel in magmoids).

both

;5 ALMOST MONADS.

;5 The following is a common interface to monad-like

;3 structures that do not necessarily satisfy any of the
;; monad axioms.

(struct monad (return bind))

;; RIGHT DO-NOTATION.

;; Given a monad m, do notation is implemented

;5 inductively by the following two rewriting rules.

(define-syntax rDo
(syntax-rules (<- return)

;5 (1) A statement (x <- f), followed by the rest of

;3 the program (p ...) is translated into a Kleisli
:; extension, (A x. { p T (f).
[ (rDom

x <- f

p ..

((monad-bind m) f
(match-lambda [x (rDo m p ...)1)) 1]

;5 (2) A return (return x) is translated to the unit
;; of the monad, n(x).
[ (rDom

return x)
((monad-return m) x) 1))

(provide rDo (struct-out monad))

LEFT-DO.RKT

#lang racket
(require sesquilaw/right-do)

LEFT DO-NOTATION.

)

Elena Di Lavore, Mario Roman, and Mark Széles

Let us now implement left do-notation in terms of
right do-notation. It will be inductively implemented
as a left-fold with an accumulator that contains the
;3 first part of the program. Let us first describe the
;; more general accumulator version: the left-associating
version is the particular case that leaves the
accumulator empty.

(define-syntax accDo
(syntax-rules (<- return)

;5 (1) A statement (x <- f), followed by the rest of

;3 the program (p .) is added to the accumulator

;3 (acc) and the variable is added to the accumulated

;; variables (accVar).

[ (accDo m accVar acc

x <- f
po..2)
(accDo m (list x accVar) (rDo m
accVar <- acc
x <- f
return (list x accVar))
p ...) ]

;5 (2) A return statement (return x) is translated to
;; a right do-notation block evaluating the
;3 accumulator.
[ (accDo m accVar acc
return x)

(rDo m
accVar <- acc
return x) )
;; Finally, we declare that a left-associating do

;35 notation block is the same as an accumulating
;35 do-notation block with an empty accumulator.
(define-syntax 1Do

(syntax-rules (<- return)
;3 (3) An arbitrary left-associating block is the
;; same as an accumulator block with an empty
;3 accumulator.
[ (1Do m

po..)

(accbo m "()
(rDo m
return '())
po...) EbD)

(provide rDo 1Do (struct-out monad))

MONTY-HALL.RKT

#lang racket

MONTY HALL.

This file implements the Monty Hall problem, a famous
probability puzzle originally posed by Steve Selvin in
a letter to American Statistician.

Reference:
Letters to the Editor.
Steve Selvin, 1975.

American Statistician.

(require sesquilaw/left-do)
(require sesquilaw/distributions)
(require sesquilaw/norm)

DESCRIPTION.

I

We are in a game show, and a prize (a car, in the

)
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;; original is hidden behind one of three doors (left,

;; middle, and right). We constestant picks a door (say,
;3 the middle one). For dramatic effect, the host opens
;5 one of the non-chosen doors (say, the left one). The
;; host does so avoiding the door that does contain the
;3 car (for it would spoil the show) and otherwise

;3 randomly and uniformly. Finally, the host offers us to
;; change doors and pick the other one that remains

;35 closed. Should we change doors?

HOST.
;; Let us first formalize the behaviour of the host: it

;; picks randomly and uniformly among the doors that have
;; not been chosen and that, moreover, do not contain the
;5 car.
(define (host car choice)
(match (cons car choice)
[(cons 'left 'left) (uniform 'middle 'right)]
[(cons 'left 'middle) (uniform 'right)]
[(cons 'left 'right) (uniform 'left)]
[(cons 'middle 'left) (uniform 'right)]
[(cons 'middle 'middle) (uniform 'left 'right)]
[(cons 'middle 'right) (uniform 'left)]
[(cons 'right ‘'left) (uniform 'middle)]
[(cons 'right 'middle) (uniform 'left)]
[(cons 'right ‘'right) (uniform 'left 'middle)]))
;; FORMULATION.

;; Let us formalize the Monty Hall problem using

;; do-notation. We repeat the exact same formalization
;; twice: once using right-associating do-notation and
;5 once using left-associating do-notation. The result
;; will be different in both cases.

;35 The program lines mean that
;5 (1) the car is distributed uniformly;
;5 (2) the host (knowing our choice) opens a door
;5 (3) we observe the host opened the left door.
;5 What is the probability distribution of the car?
(define l-monty-hall
(1Do Norm
car <- (uniform
opened <- (host car
'() <- (observe opened
return car))

'left 'middle
'middle)
'left)

‘right)

(define r-monty-hall
(rDo Norm
car <- (uniform
opened <- (host car
'() <- (observe opened
return car))

'left 'middle
'middle)
'left)

'right)

SMOKING.RKT

#lang racket

(require sesquilaw/left-do)
(require sesquilaw/distributions)
(require sesquilaw/norm)

(define survey

(distribution
[(list 'smoker 'tar
[(list 'smoker 'tar
[(list 'nonsmoker 'tar 'noca
[(list 'nonsmoker 'tar 'canc
[(list 'smoker 'notar 'nocan
[(list 'smoker 'notar 'cance
[(list 'nonsmoker 'notar
[(list 'nonsmoker 'notar

'nocance
'cancer)

'ca

(define (front-door data i)
(1Do Norm

z <- (1Do Norm
(list xp z yp) <-
'() <- (observe i
return z)

(1Do Norm
(list x zp yp) <-
return x)

(1Do Norm
(list xp zp y) <-
'() <- (observe x
'() <- (observe z
return y)

return y))

X <=

y <=

(front-door survey
(front-door survey

'smoker)
"nonsmoker)

r)

ncer)
er)
cer)
)

ncer)

data

xp)

data

data
xp)
zp)

323/8001]
57/8001
1/800]
19/800]
18/800]
2/800]

'nocancer) 38/800]

342/8001))
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